Cato Farms Stream Restoration Project No. 72 2007 Monitoring Report (Final): Year 3 of 5

March 2008

- Prepared for: NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699-1652
- Prepared by: Jordan, Jones, and Goulding, Inc. 9101 Southern Pine Blvd., Suite 160 Charlotte, NC 28273
- Design Firm: CH2MHill, Inc. 4824 Parkway Plaza Boulevard, Suite 200 Charlotte, NC 28217

Table of Contents

EXECUTIVE SUMMARY

SECTION 1 – PROJECT BACKGROUND

1.1 Location and Setting	. 1-1
1.2 Mitigation Structure and Objectives	
1.3 Project History and Background	
1.4 Monitoring Plan View	

SECTION 2 – PROJECT CONDITION AND MONITORING RESULTS

2.1 Vegetation Assessment	
2.1.1 Soil Data	
2.1.2 Vegetative Current Conditions	
2.1.3 Vegetative Current Condition Plan View	
2.1.4 Stem Counts	
2.1.5 Vegetation Plot Photos	
2.2. Stream Assessment	
2.2.1 Stream Current Condition Plan View	
2.2.2 Stream Current Condition Table	
2.2.3 Numbered Issues Photo Section	
2.2.4 Fixed Photo Station Photos	
2.2.5 Stability Assessment	
2.2.6 Quantitative Measures Tables	
2.2.7 Hydrologic Criteria	

SECTION 3 – METHODOLOGY

3.1 Methodology

SECTION 4 – REFERENCES

SECTION 5 – FIGURES

SECTION 6 – APPENDICES

List of Tables

Table 1.1	Project Mitigation Structure and Objectives	1-2
Table 1.2	Project Activity and Reporting History	
Table 1.3	Project Contacts	1-3
Table 1.4	Project Background	1-3
Table 2.1	Preliminary Soil Data	2-2
Table 2.2	Stem Counts for Planted Species Arranged by Plot	2-4
Table 2.3	Categorical Stream Feature Visual Stability Assessment	2-8
Table 2.4	Baseline Morphology and Hydraulic As-Built Summary	2-9
Table 2.5	Morphology and Hydraulic Monitoring Summary	2-10
Table 2.6	Verification of Bankfull Events	2-11

List of Figures

- Figure 1.1 Project Location and Watershed Map
- Figure 1.2 Monitoring Plan View Map
- Figure 2.1 Soils Map

List of Appendices

- Appendix 1 Vegetation Raw Data
- Appendix 2 Geomorphic and Stream Stability Data
- Appendix 3 Integrated Problem Areas Plan View

EXECUTIVE SUMMARY

Executive Summary

The Cato Farms Stream Restoration Project is located in Mecklenburg County. The stream restoration project consisted of restoring 2,500 linear feet of an unnamed tributary (UT) to Clark Creek, restoring 2.9 acres of associated riparian zone, providing one cattle crossing, and fencing the riparian corridor to exclude cattle grazing. The following goals for the Cato Farms Stream Restoration Project were established through the North Carolina Ecosystem Enhancement Program (NCEEP).

- 1. Restore the stream to a stable form.
- 2. Restore the riparian zone adjacent to the stream.
- 3. Provide a crossing for cattle at one location along the project reach.
- 4. Provide fencing to prevent cattle from entering the riparian area.

The Cato Farms Stream Restoration Project was restored by relocating approximately 2,000 linear feet (Reach 1) of the existing channel to establish an E-type channel (Priority 1). In addition, approximately 500 linear feet (Reach 2) of stream was restored in-place to create a B-type channel (Priority 3) to transition the channel to the confluence elevation with Clark Creek. Cato Farm's riparian areas were planted to improve habitat and stabilize streambanks. The entire site was fenced in to exclude cattle access to the UT and a cattle crossing was established at the lower end of the project. This report serves as the 3rd year of the 5 year monitoring plan for the Cato Farms Stream and Wetland Restoration Site.

Results from the 2007 stream monitoring effort indicate that Cato Farms is maintaining vertical and lateral stability. Current drought conditions during the 2007 monitoring year have severely lowered the normal baseflow levels, creating minimal flow. These conditions created high silt deposition throughout Reach 1 and 2 and stagnant pools with algal blooms in Reach 2. The pattern, profile, and dimension of the restored UT appear stable. A few problem areas were observed, such as moderate bank erosion, moderate to poor streambank cover, loose matting, and aggradation. It is recommended that sections with poor streambank cover should be stabilized with matting and vegetation as soon as possible to prevent future problems.

The 2007 vegetation plot monitoring results indicate that the Cato Farms Site appears to be meeting vegetation success criteria. Planted and naturally recruited vegetation is doing well at the site. Some minor vegetation problems were noted. There are several small barren areas and a high live stake mortality observed along the streambanks. The high live stake mortality observed could be from being planted in compacted soil, planted too high on the banks, or planted too late in the growing season. In the limited areas where vegetation has not established, addition of temporary and permanent seeding is recommended. On the banks with high live stake mortality, replacement of live stakes will help provide long-term stability.

The survival rate for the woody vegetation monitored is 74%. The monitoring data indicates an average of 15 stems per plot. Using the monitoring plot's size of $10m \times 10m (0.025 \text{ ac})$, the site density is approximately 600 planted stems per acre. The success goal for planted woody vegetation requires 320 stems per acre for year 3. Overall, the Cato Farms Stream Restoration Project appears to be stable and has met stream and vegetation goals for monitoring year 3.

SECTION 1 PROJECT BACKGROUND

SECTION 1 PROJECT BACKGROUND

The background information provided in this report is referenced from previous monitoring reports.

1.1 Location and Setting

The Cato Farms Stream Restoration Project is located at the Cato Farms Property in Mecklenburg County, North Carolina immediately south of Huntersville-Concord Road just east of Huntersville (Figure 1.1). The stream restoration project consisted of restoring 2,500 linear feet of an UT to Clark Creek, restoring 2.9 acres of associated riparian zone, providing one cattle crossing, and fencing the riparian corridor to exclude cattle access.

To access the site from Charlotte, take Interstate 77 North to Exit 25 (Gilead Road) and turn right off the exit heading east. Gilead Road will turn into Huntersville-Concord Road. Take Huntersville-Concord Road from this point for approximately 2 miles. Huntersville-Concord Road will cross the UT at a low point in the road. The tributary is located approximately 1,000 feet downstream from where Huntersville-Concord Road crosses the UT to Clark Creek.

1.2 Mitigation Structure and Objectives

The UT to Clark Creek is located within the Southern Outer Piedmont Physiographic Region. The UT site drains approximately 0.41 square miles to Clark Creek, within the Yadkin-Pee Dee River Basin (HUC 3040105). The UT runs through the agricultural property of William Cato and family. Prior to restoration, the site was predominantly utilized for cattle grazing. Historically, the land was cleared to provide pasture land, with access to the stream for cattle watering. The UT appears to previously have been channelized/straightened, and ditches were created to drain adjacent wetlands. These activities are thought to have inhibited stream channel stability; therefore, producing an incised, eroded stream. Furthermore, the channel incision may have caused adjacent hydric soils to become less saturated. The following goals were established for the Cato Farms Stream Restoration Project.

- 1. Restore the stream to a stable form.
- 2. Restore the riparian zone adjacent to the stream.
- 3. Provide a crossing for cattle at one location along the project reach.
- 4. Provide fencing to exclude cattle access to the UT and the riparian areas.

The Cato Farms Stream Restoration Project was restored by relocating approximately 2,000 linear feet (Reach 1) of the existing channel to establish an E-type channel (Priority 1) and restoring in-place approximately 500 linear feet (Reach 2) to create a B-type channel (Priority 3) to transition the channel to the confluence elevation with Clark Creek. Cato Farm's riparian areas were planted to improve habitat and stabilize streambanks.

A sinuous, stable pattern, with riffle-pool bed features was constructed. Cross-vanes and constructed riffles were installed to provide bank stabilization and maintain grade control. Approximately 2.9 acres of wetlands were preserved by fencing in the entire site to exclude cattle access to the UT and establishing a cattle crossing at the lower end of the project (Table 1.1). Riparian areas along Reach 1 were planted with native grasses and woody stem vegetation. Streambanks were stabilized with geotextile matting, native grasses, and live stakes. Reach 2 was soil bioengineered (live staked) with shrubs.

Table 1.1Project Mitigation Structure and ObjectivesCato Farms Stream Restoration/Project No. 72

Segment/Reach	Mitigation Type	Approach	Linear Feet or Acreage	Stationing (ft)	Comments
Reach 1	Restoration/Relocation	P1	2,000 linear feet	0+00-20+00	Channel restoration, relocation with use of grade control and bank protection structures.
Reach 2	Restoration in-place	Р3	500 linear feet	20+00-25+00	Channel restoration, in-place with use of grade control and bank protection structures.
Cato Farms	Preservation	-	2.9 acres	-	Buffer Restoration/Replanting

1.3 Project History and Background

The stream restoration was designed by CH2MHill, Inc. Monitoring has been conducted annually from 2005 to present. This report serves as the 3rd year of the 5 year monitoring plan for the Cato Farms Stream Restoration Site. Tables 1.2 and 1.3 provide detailed project activity, history and contact information for this project. Table 1.4 provides more in-depth watershed/site background for the UT to Clark Creek

Table 1.2Project Activity and Reporting HistoryCato Farms Stream Restoration/Project No. 72

Activity or Report	Data Collection Completed	Actual Completion or Delivery					
Restoration Plan	N/A	July 2002					
Final Design-90%	N/A	November 2002					
Construction	N/A	N/A					
Temporary S&E mix applied to entire project area*	N/A	N/A					
Permanent seed mix applied to reach	N/A	N/A					
Mitigation Plan/ As-Built (Year 0 Monitoring)	N/A	Summer 2004					
Year 1 Monitoring	June 2005	January 2005					
Year 2 Monitoring	September 2006	November 2006					
Year 3 Monitoring	August 2007	November 2007					
Year 4 Monitoring	TBD	TBD					
Year 5 Monitoring	TBD	TBD					
*Seed and mulch are added as each section of construction is completed.							

	CH2MHill, Inc.				
Designer	4824 Parkway Plaza Boulevard, Suite 200				
Designer	•				
	Charlotte, NC 28217				
Contractor's Name	Unknown				
Planting Contractor	Unknown				
Seeding Contractor	Unknown				
	Jordan, Jones, and Goulding, Inc.				
Monitoring Performers	9101 Southern Pine Blvd., Suite 160				
	Charlotte, NC 28273				
Stream Monitoring, POC	Kirsten Young, 704-527-4106 ext.246				
Vegetation Monitoring, POC	Kirsten Young, 704-527-4106 ext.246				

Table 1.3Project ContactsCato Farms Stream Restoration/Project No. 72

Table 1.4Project BackgroundCato Farms Stream Restoration/Project No. 72

Project County	Mecklenburg, North Carolina
Drainage Area	0.41 sq. mi
Drainage impervious cover estimate	< 5%
Stream Order	1st
Physiographic Region	Piedmont
Ecoregion	Southern Outer Piedmont
Rosgen Classification of As-built	E (~2,000 ft) B (~500 ft)
Cowardin Classification	N/A
Dominant soil types	Monacan, Cecil, Enon, Iredell, Helena, and Wilkes
Reference site ID	Coffey Creek UT to Little Sugar Creek
USGS HUC for Project and Reference	3040105
NCDWQ Sub-basin for Project and Reference	03-07-11
NCDWQ classification for Project and Reference	С
Any portion of any project segment 303d list?	No
Any portion of any project segment upstream of a 303d listed segment?	No
Reason for 303d listing or stressor?	N/A
% of project easement fenced?	100%

1.4 Monitoring Plan View

The monitoring plan view map (Figure 1.2) illustrates the location of the longitudinal profile stations, cross-section stations, vegetation plots, and photo points. A total of six cross-sections were previously established within Reach 1 and 2. Approximately 2,500 linear feet of longitudinal profile was monitored. Eight previously established vegetation plots were monitored in 2007. Photographs were taken upstream and downstream at each cross-section and at existing photo points.

SECTION 2 PROJECT CONDITION AND MONITORING RESULTS

SECTION 2 PROJECT CONDITIONS AND MONITORING RESULTS

The following monitoring results are from the 2007 (year 3 of 5) survey completed in August 2007.

2.1 Vegetation Assessment

Eight previously established vegetation monitoring plots were monitored within the riparian buffer of the Cato Farm Stream Restoration Project. Vegetation assessments were conducted following the NCEEP 2004 Stem Counting Protocol which consists of counting woody stems within the established vegetation plots. Planted zones related to the stream restoration consist of the streambank and the buffer area adjacent to the stream. The riparian zone begins at the top of bank and proceeds perpendicular to the stream. The planted streambank initiates at base flow elevation and extends to the top of bank. The overall success of these two particular planted zones is good. Live stakes (*Salix nigra* and *Cornus amonum*) and herbaceous species (*Carex* spp., *Juncus* spp., and *Panicum* spp.) along the streambank are healthy and abundant. The riparian buffer is dominated by a thick herbaceous layer with numerous shrubs and saplings throughout. Natural recruitment vegetation appears to be dominant. This is likely due to the native seed bank.

Overall, planted and naturally recruited vegetation is doing well at the site. Some minor vegetation problems were noted. There are several small barren areas and a high live stake mortality observed along the streambanks. The high live stake mortality observed could from being planted in compacted soil, planted too high on the banks, or planted too late in the growing season. The majority of the live stakes throughout the project area are thriving.

The areas of compacted soil and live stake mortality could lead to an erosion problem over time depending on the extent of natural recruitment in these areas. Coir matting is still holding the majority of the banks together, but it will decompose eventually leaving these areas barren.

In the limited areas where vegetation has not established, addition of temporary and permanent seeding is recommended. On the banks with high live stake mortality, replacement of live stakes is recommended to provide long-term stability.

2.1.1 Soil Data

The Cato Farms Stream Restoration Project is situated between a narrow ridge and valley within the Outer Piedmont Belt of the North Carolina Piedmont Physiographic Province. Researchable data indicates that the soils within the project area are those found in alluvial landforms in this physiographic region; however, grading and filling activities during construction likely have disturbed the parent soil material. Review of the Soil Survey of Mecklenburg County, North Carolina indicates that four soil series are found within or adjacent to the project limits (Figure 2.1). These soil series consist of Enon, Helena, Monacan, and Wilkes. Enon soils are very deep, well-drained soils on ridges and side slopes of the Piedmont uplands. The soils are formed in clayey residuum weathered from mafic or intermediate igneous and metamorphic rocks such as diorite, gabbro, gneiss, and schist of the Piedmont uplands. Slopes range from 0 to 45 percent for the Enon series. Helena soils are very deep, well-drained soils on broad ridges and toe slopes of the Piedmont uplands. The soils are formed in residuum weathered from a mixture of felsic, intermediate, or mafic igneous, or metamorphic rocks such as granite, or granite gneiss that may be cut by dykes of gabbro and diorite, or mixed with hornblende schist or hornblende gneiss. Slopes range from 0 to 15 percent for the Helena series; however, these soils are generally found on slopes that range from 0 to 10 percent. Monacan soils are very deep, well-drained to somewhat poorly-drained soils found along stream corridors. These soils are formed in recent alluvium sediments of the Piedmont and Coastal Plain. Slopes are generally less than 2 percent. Wilkes soils are shallow, well-drained soils adjacent to drainageways. They are formed in residuum weathered from intermediate and mafic crystalline rocks on the Piedmont uplands. Slopes range from 0 to 25 percent for the Wilkes series. Please refer to Table 2.1 for the preliminary soil data of the soil series within the project area.

Table 2.1Preliminary Soil DataCato Farms Stream Restoration Project No. 72

Series Max Depth (in)		% Clay on Surface	K Factor	T Factor	OM %
Enon	60	5 - 20	0.34	4	0.0 - 3.0
Helena	64	5 - 20	0.37	3	0.0 - 2.0
Monacan	65	7 - 27	0.28	4	0.0 - 3.0
Wilkes	45	5 - 20	0.28	2	0.0 - 2.0

2.1.2 Vegetative Current Conditions

During the initial assessment survey conducted in April 2007, it was noted that some minor areas of streambank have suffered localized loss of vegetative cover. In these areas, it is apparent that flood events likely caused the bank erosion resulting in a loss of vegetation. Furthermore, the compaction of soil and nutrient poor conditions may also be contributing to the mortality of live stakes and herbaceous cover in these limited areas. During the vegetative survey completed in August, it was observed that many of the problem areas noted during the initial vegetation assessment (March 2007) have improved throughout the growing season. It should be noted that much of the sites herbaceous cover in the riparian area is dog-fennel (*Eupatorium capillifolium*). This species seems to be invasive on site; however, it is not listed as an invasive species for North Carolina. Control of this species may need to be done in order to allow for preferred riparian species to establish. Please refer to Appendix 1.1 for the vegetative problem areas table.

2.1.3 Vegetative Current Condition Plan View

Please refer to Appendix 3 for location of vegetative current condition areas onsite and Appendix 1.2 for representative vegetation current condition photos.

2.1.4 Stem Counts

JJG conducted the vegetative assessment and vegetative plot analysis in March and August 2007. The eight previously established vegetative plots represent the riparian buffer zone and streambank vegetation.

Trees planted within the plots monitored includes white oak (*Quercus alba*), swamp chestnut oak (*Quercus michauxii*), river birch (*Betula nigra*), American sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), willow species (*Salix sp.*), silky dogwood (*Cornus amomum*), box-elder (*Acer negundo*), and black gum (*Nyssa sylvatica*). In addition, natural recruitment vegetation was also monitored within these plots. Species encountered were tulip poplar (*Liriodendron tulipifera*), sweet gum (*Liquidambar styraciflua*), red maple (*Acer rubrum*), tag alder (*Alnus serrulata*), Eastern red cedar (*Juniperus virgiana*), oak species (*Quercus spp.*), and species that were originally planted. Refer to Table 2.2 for a summary of stem counts for planted species.

Table 2.2
Stem Counts for Planted Species Arranged by Plot
Cato Farms Stream Restoration Project No. 72

Stem Counts for Planted Species Arranged by Plot – MY-2007											
		Vegetation Plots Monitored (MY-2007)					MY 3- 2007 2006		MY 1- 2005		
Species	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8	Totals	Totals	Totals
Shrubs											
Aronia arbutifolia	0	0	0	0	2	0	0	0	2	3	13
Cephalanthus occidentalis	0	2	1	2	1	0	0	0	6	4	8
Cornus amomum	3	0	2	4	10	0	3	10	32	32	44
Cornus sericea	0	0	0	3	0	0	0	0	3	3	5
Salix nigra*	4	1	1	0	1	4	3	2	16	16	16
Sambucus canadensis	0	2	1	0	0	0	0	0	3	2	5
Trees											
Acer negundo*	1	2	2	2	2	1	4	4	18	18	18
Carpinus caroliniana	0	0	0	0	0	0	0	0	0	0	1
Carya aquatica	0	0	0	0	0	0	0	0	0	0	3
Fraxinus pennsylvanica*	0	1	0	0	0	2	2	0	5	5	5
Juglans nigra	0	0	0	0	0	0	0	0	0	0	1
Nyssa sylvatica	1	0	0	0	0	0	0	0	1	1	1
Populus deltoides*	0	0	0	1	1	1	0	2	2	2	2
Quercus alba*	0	1	0	0	0	1	1	2	5	5	6
Quercus michauxii*	1	2	0	3	0	3	2	2	14	14	14
Total Planted Live Stems (2007)	10	12	8	15	17	13	17	24	105	N/A	N/A
Average # of Stems (2007)						1	5				
Percent Survival (2007)	77%	77% 86% 80% 100% 94% 72% 61% 92% Avg = 74%									
Stem Density (2007)	600										
*Numerous volunteer stems were observed											

The survival rate for the woody vegetation monitored for 2007 is 74%. The monitoring data indicates an average of 15 stems per plot. Using the monitoring plots size of $10m \ge 10m (0.025 ac)$, the site density is approximately 600 planted stems per acre. The success goal for planted woody vegetation is 320 stems per acre. Furthermore, many natural recruitment stems were observed within all eight plots. If these volunteers were also included in the stem average and site density calculation, then the number would increase dramatically. The site has satisfied this goal for monitoring year 3.

In conclusion, the vegetation within the Cato Farms Stream Restoration Project meets the success criteria for year 3. Although some loss of streambank vegetation has occurred, the overall growth of the riparian buffer is good.

2.1.5 Vegetation Plot Photos

Please refer to Appendix 1.3 for photographs of the monitoring plots.

2.2 Stream Assessment

Stream dimension, pattern, profile and substrate were evaluated within 2,500 linear feet of the stream restoration site. The stream assessment included walking the entire stream reach and monitoring 2,500 linear feet of longitudinal profile and six pre-established cross-sections. Please refer to Table 2.3 and Appendix 2 for the stability assessment, stream photographs, and raw data, Table 2.4 for the baseline morphology and hydraulic as-built summary, Table 2.5 for monitoring years 2003-2007 morphology and hydraulic summary, and Appendix 3 for the current condition plan view map.

2.2.1 Stream Current Condition Plan View

Please refer to Appendix 3 for location of stream current condition areas onsite.

2.2.2 Stream Current Condition Table

Please refer to Appendix 2.1 for the stream current condition table.

2.2.3 Numbered Issues Photo Section

Please refer to Appendix 2.2 for representative stream current condition photos.

2.2.4 Fixed Photo Station Photos

Please refer to Appendix 2.3 for stream photo station photos and Appendix 2.4 for stream cross-section photos.

2.2.5 Stability Assessment

The pattern, profile, and dimensions of Reach 1 and 2 appear stable with some isolated signs of moderate erosion and heavy sediment deposition. These areas of moderate and severe bank erosion are primarily due to lack of vegetative cover. There are also numerous areas that are not actively eroding but are susceptible to bank erosion due to poor vegetative cover. Current drought conditions during the 2007 monitoring year have severely lowered the normal baseflow levels, creating minimal flow. These conditions most likely attributed to high silt deposition throughout Reach 1 and 2 and stagnant pools with algal blooms in Reach 2. It is assumed that a few high flow events would decrease and flush out some of the fine sediment depositions and algal blooms observed in the 2007 monitoring year.

Due to the nature of the previous monitoring years data provided by and to JJG, the longitudinal profile plot provided for the 2007 monitoring year overlays monitoring years 2005 (year 1 of 5) and 2007 (year 3 of 5). The 2005 monitoring survey was the only data provided that could be used in AutoCAD/LDD to accurately represent the changes in streambed morphology within the Cato Farms Stream Restoration Site. A general overview of Reach 1 and 2 is provided below.

Reach 1

In several outer bends, there are areas of moderate to severe bank erosion under the matting due to the lack of vegetative cover (Approximate stationing 9+15 and 17+00). Upstream of the bridge crossing from stationing 12+25 through 13+00, vegetation is growing in the middle of the channel, creating a mid channel bar. Within Reach 1, Cross-sections 3, 4, 5, and 6 are located. Cross-sections 3, 4 and 5, which are all pools, have moderate streambank erosion and have shown an increase in width to depth ratio (W/D). Cross-section 6 is a riffle that was previously a pool in monitoring years 2005-2006. Per NCEEP request, Cross-Section 6 was relocated in the 2007 monitoring year from a pool to a riffle stream feature. No significant changes in channel dimension were observed that indicate lateral instability is occurring.

In Reach 1, the average water surface slope and the average bankfull slope were very similar for the surveyed reach, 0.0062 ft/ft and 0.0068 ft/ft respectively. The surveyed water surface slope was slightly lower than the proposed 0.0100 ft/ft, but similar to the 2005 and 2006 surveyed slopes. The profile appears stable and is not showing significant vertical incision; however, fine silt deposition has impacted the streambed morphology. Upstream sources from construction development and abnormal rainfall conditions are most likely attributing to the increase in sediment deposition. As a result, compound pools have developed throughout the reach, increasing pool to pool spacing. For the 2007 monitoring year, the pool furthest downstream within the compound pool was counted for pool to pool spacing measurements.

Overall, pattern measurements did not illustrate any significant shifts in values when comparing the 2007 results to the 2005 and 2006 results. There are no indicators that Reach 1 is illustrating trends towards lateral migration.

Reach 2

Overall, the structures within the transition zone appear to be in good condition; however, the outer arm of some structures are lacking in vegetative cover; therefore, moderate to severe scouring is occurring (Stationing 21+00, 21+50, 22+50, 22+90, 23+90, 23+25, and 24+30). The cross-vane at stationing 24+25 has vegetation growing on the invert and lateral bars are forming on the downstream side of a few cross-vanes below stationing 22+25.

Cross-sections 1 and 2 are located within Reach 2. Both cross-section 1 and 2 are riffles and appear to be stable with minimal erosion occurring. The average water surface slope and the average bankfull slope were very similar for the surveyed reach, 0.0090 ft/ft and 0.0080 ft/ft respectively. The surveyed water surface slope was slightly lower than the proposed 0.010 ft/ft and steeper than the previous surveyed slopes in 2006 (0.0080 ft/ft and 0.0070 ft/ft, respectively). The profile appears stable and is not showing significant shifting in the bed features; however, results indicate there is a slight change. This change could be due to the minimal to absent baseflow conditions observed during the 2007 longitudinal survey. Pattern measurements also showed a shift in values when comparing the 2007 results to 2006 results. Riffle features that were previously noted in 2006 have transitioned into runs and pool to pool spacing increased. These changes could be due to the lower baseflow levels and sediment deposition due to drought conditions and sediment deposition from upstream sources.

In summary, both Reach 1 and 2 appear to be stable with some minor areas of moderate to severe bank erosion due to lack of vegetative cover. Some minor bank repair work was completed after construction, but no specific information was provided. It is recommended that the sections with poor streambank cover should be stabilized with matting and vegetation as soon as possible to prevent future problems. Please refer to Table 2.3 for a summary of the visual stability assessment, Table 2.4 for the morphology and hydraulic as-built summary, Table 2.5 for monitoring years 2005-2007 morphology and hydraulic summary, Table 2.6 for hydrologic criteria, and Appendix 2 for more detailed stream data tables and plots.

Reach 1								
Feature	As-Built	MY1 (2005)	MY2 (2006)	MY3 (2007)				
A. Riffles	-	-	100%	75%				
B. Pools	-	-	100%	100%				
C. Thalweg	-	-	98%	98%				
D. Meanders	-	-	98%	99%				
E. Bed General	_	-	100%	99%				
F. Bank Performance*	-	-	N/A	96%				
G. Vanes/J Hooks, etc	-	-	N/A	N/A				
F. Wads/Boulders	-	-	96%	100%				
		Reach 2						
Feature	As-Built	MY1 (2005)	MY2 (2006)	MY3 (2007)				
A. Riffles	-	-	N/A	N/A				
B. Pools	-	-	90%	100%				
C. Thalweg	-	-	100%	100%				
D. Meanders	-	-	91.67%	100%				
E. Bed General	-	-	100%	100%				
F. Bank Performance*	-	-	100%	91%				
G. Vanes/J Hooks, etc	-	-	N/A	73%				
F. Wads/Boulders	-	-	99%	N/A				

 Table 2.3

 Categorical Stream Feature Visual Stability Assessment

 Cato Farms Stream Restoration Project No. 72

(Cells noted with a (-), data was not provided, *Although bank erosion is occurring within the reach, it is not actively eroding.)

2.2.6 Quantitative Measures Tables

Tables 2.4 and 2.5 display morphological summary data from all monitoring years. Raw survey data can be found in Appendix 2.

	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream		Design			As-Built		
DIMENSION	Min	Max	Med	Min	Max	Med	UR	MR	LR	Coffey Creek	Park South Drive	Restoration Reach (Reach 1)	Transition Reach (Reach 2)	Med	Min N	Max	
Bankfull Width (ft)	USGS Gage Data is unavailable for this tributary						7.7	5.2	7.6	31.6	5.9	7.00	13.50	I			
Floodprone Width (ft)							16	7	11	46	29	34.20	19.67				
Bankfull Cross-sectional Area						5.7	8.6	9.7	55.4	6.7	8.60	9.70					
Bankfull Mean Depth							0.7	1.65	1.3	1.8	1.1	1.33	0.75				
Bankfull Max Depth							1.9	2	1.9	2.5	1.5	1.76	1.06				
Width/Depth Ratio	USGS Gage I	Data is unavailable	e for this tributary	-			10.4	3.2		18	5.2	5.25	17.99	As-Built Data was not provided			
Entrenchment Ratio							2.1	1.3	6	1.5	4.9	4.89	1.46				
Wetted Perimeter (ft)	7						-	-	-	-	-	-	-				
Hydraulic Radius (ft)	7						-	-	-	-	-	-	-				
Bank Height Ratio	7						1.92	2.19	3.21	1.33	1.83	1.00	1.65-6.41				
PATTERN																	
Channel Beltwidth (ft)						8	5.5	8	226	36	42.6	96.64					
Radius of Curvature (ft)		1				0	0	0	115.7-467.2	11.1-23.5	13.09-27.72	49.47-199.78	- As-Built Data was not provid				
Meander Wave Length (ft)	-			-		-	0	0	747-849	44-61	51.89-71.94	319.13-363.04	As-Built D	vided			
Meander Width Ratio						1.04	1.05	1.05	7.16	6.07	6.07	7.16					
PROFILE								•	•								
Riffle Length (ft)				-				-	-	-	-	-	-				
Riffle Slope (ft/ft)	7						-	-	-	-	-	-	-	A a Duilt Data was not provid			
Pool Length (ft)	7	-				-	-	-	-	-	-	-	As-Built Data was not provided				
Pool to Pool Spacing (ft)	7					17.5-32.5	35.2-35.9	3.55-33.3	100-120	14-27	16.51-31.84	42.76-51.31					
SUBSTRATE								•	•								
D50 (mm)				-				0.5	1.2	2.3	0.8	0.82	1.2	A a Duilt Data was not an		wided	
D84 (mm)		-					0	4	9	142	8	8.3	8.64	- As-Built Data was not provid		videu	
						.			14.4		a <i>a</i>			[
ADDITIONAL REACH PARAMETERS	-	USGS Gage Da	ita	Regional Curve Interval		Regional Curve Interval	Pre-I	Pre-Existing Condition		Project Rei	ference Stream	Des	ign	As-Built			
Valley Length (ft)	_						-	-	-	-	-	-	-	_			
Channel Length (ft)	_						-	-	-	-	-	-	-	_			
Sinuosity				-			1.01	1.04	1.1	1.22	1.39	1.39	1.22	As-Built Data was no		ovided	
Water Surface Slope (ft/ft)	4						0.0098	0.0092	0.0154	0.01	0.0123	0.01	0.01				
Bankfull Slope (ft/ft)	_						-	-	-	-	-	-	-				
Rosgen Classification							E6	G5c	G5c	B4c	E5	Е	В				

Table 2.4Baseline Morphology and Hydraulic As-Built Summary
Cato Farms Stream Restoration/Project No. 72

Cells noted with a (-), data was not provided

Page 2-9 Project Conditions and Monitoring Results

Table 2.5
Morphology and Hydraulic Monitoring Summary
Cato Farms Stream Restoration/Project No. 72

	Cross	Cross-Section #1-Riffle			Cross-Section #2-Riffle			Cross-Section #3-Pool			Cross-Section #4-Pool			Cross-Section #5-Pool			Cross-Section #6-Riffle		
DIMENSION	2005	2006	2007	2005	2006	2007	2005	2006	2007	2005	2006	2007	2005	2006	2007		2007**		
Bankfull Width (ft)	6.20	5.96	9.02	10.70	12.00	11.06	6.70	7.7	7.38	16.20	14.40	15.58	7.00	11.50	11.91		9.04		
Floodprone Width (ft)	28.10	>100	>100	24.80	>100	>100	-	N/A	N/A	-	N/A	N/A	-	N/A	N/A	>100			
Bankfull Cross-sectional Area	5.40	4.09	6.09	4.40	3.14	2.74	6.40	7.65	6.76	8.40	9.07	8.07	6.00	9.10	9.15	8.20			
Bankfull Mean Depth	0.90	0.69	0.67	0.40	0.26	0.25	-	0.99	0.92	-	0.63	0.52	-	0.79	0.77	0.91			
Bankfull Max Depth	1.70	1.26	1.64	0.70	0.76	0.81	1.90	2.04	1.88	1.60	1.63	1.62	2.10	2.36	2.30	2.21			
Width/Depth Ratio	7.20	8.64	13.46	26.20	46.15	44.24	-	7.78	8.02	-	22.86	29.96	-	14.56	15.47	9.93			
Entrenchment Ratio	4.50	>2.2	>2.2	2.30	>2.2	>2.2	-	N/A	N/A	-	N/A	N/A	-	N/A	N/A	>2.2			
Wetted Perimeter (ft)	-	6.53	9.92	-	15.71	11.69	-	9.13	8.44	-	15.26	16.95	-	13.2	14.06	10.71			
Hydraulic Radius (ft)	-	0.63	0.61	-	0.21	0.23	-	0.84	0.8	-	0.59	0.48	-	0.69	0.65	0.77			
Bank Height Ratio	-	1.00	1.00	-	1.00	1.00	-	1.00	1.00	-	1.00	1.00	-	1.00	1.00	1.00			
SUBSTRATE								•											
D50 (mm)	0.27	0.71	0.05	0.06	0.66	0.05	Silt	0.35	0.06	0.10	0.44	0.06	0.38	0.36	0.11	0.13			
D84 (mm)	0.50	1.51	0.8	0.31	2.02	1.00	0.19	1.04	0.38	0.23	0.87	0.43	0.86	0.84	0.58	0.75			
					Reach 1				Reach 2										
PROFILE	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
Riffle Length (ft)	8	80	13	1.77	42.20	9.20	4	14	9	-	-	-	7.80	18.20	11.90	N/A	N/A	N/A	
Riffle Slope (ft/ft)	0.0023	0.0080	0.0189	0.0000	0.0621	0.0066	0.0054	0.0622	0.0244	-	-	-	0.0051	0.0218	0.0121	N/A	N/A	N/A	
Pool Length (ft)	8.00	118.00	20.00	2.40	74.20	15.30	1	83	29	-	-	-	18.40	37.60	21.40	15	35	3	
Pool to Pool Spacing (ft)	15.50	215.00	33.50	8.00	99.70	33.85	21	202	60	-	-	-	5.3	51.9	21.8	36	105	4	

ADDITIONAL REACH PARAMETERS	2005*	20	06	2007		
		Reach 1	Reach 2	Reach 1	Reach 2	
Valley Length (ft)	3614.06	1240.00	420	1240.00	420	
Channel Length (ft)	2512	2000	512	2000	512	
Sinuosity	1.44	1.61	1.22	1.61	1.22	
Water Surface Slope (ft/ft)	0.0071	0.0063	0.0080	0.0062	0.0090	
Bankfull Slope (ft/ft)	0.0069	0.0060	0.0070	0.0068	0.0080	
Rosgen Classification	E5/B5	Е	В	Е	В	

*2005 Survey did not break up stream into separate types of restoration reaches for profile and additional reach parameter calculations and Reach 2 survey lengths were different between monitoring years 2005 and 2006 Cells noted with a (-), data was not provided Cells noted with a (N/A), data was not applicable

Page 2-10 Project Conditions and Monitoring Results

7. Hydrologic Criteria

The Cato Farms Stream Restoration Project has a crest gauge located on site, but was installed following our 2007 survey. Therefore visual assessments are noted for bankfull verification. Indicators such as wrack lines and vegetation layover were observed at the bankfull and greater elevations within the restoration site during the 2007 stream survey. A local USGS gauge, Clark Creek, is located within the area, but the drainage area is larger than 10 square miles and was not used per NCEEP recommendation. Table 2.6 summarized the visual assessment results below.

Table 2.6Verification of Bankfull EventsCato Farms Stream Restoration Project/Project No. 72

Date of Collection	Date of Occurrence	Method	Photo # (if available)
Summer/Fall 2006	Unknown	Visual Assessment	N/A
Spring/Summer 2007	Unknown	Visual Assessment	N/A

SECTION 3 METHODOLOGY

SECTION 3 METHODOLOGY

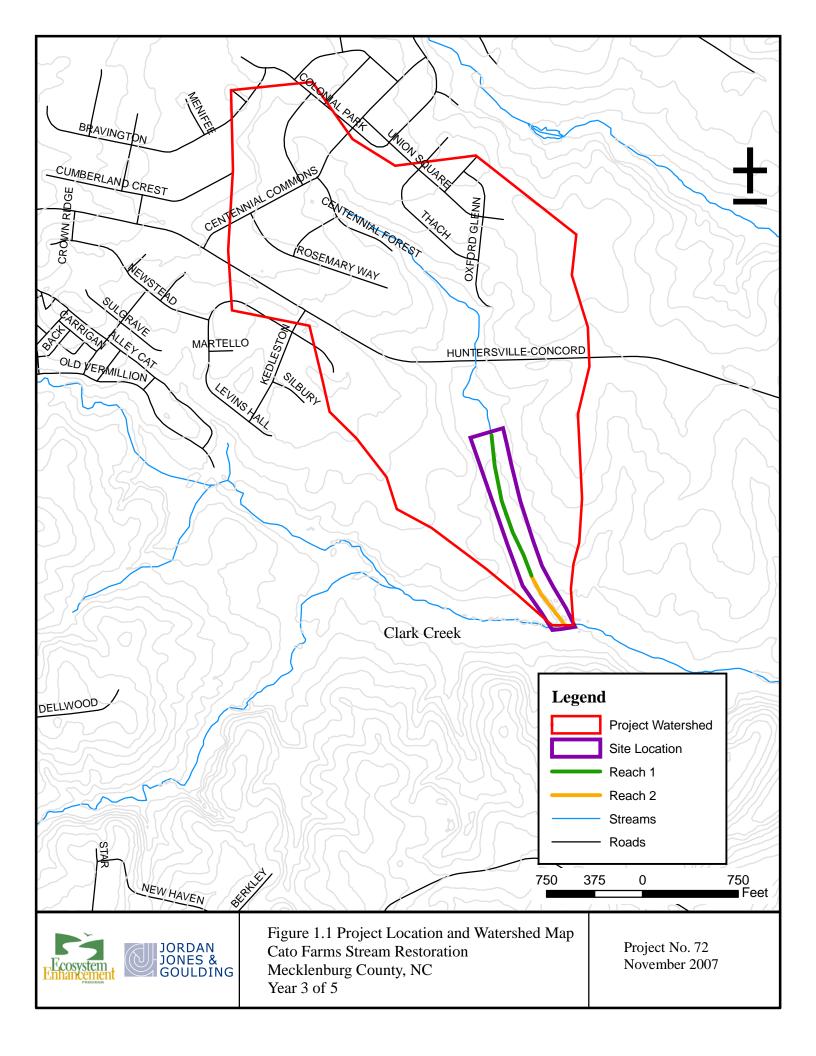
3.1 Methodology

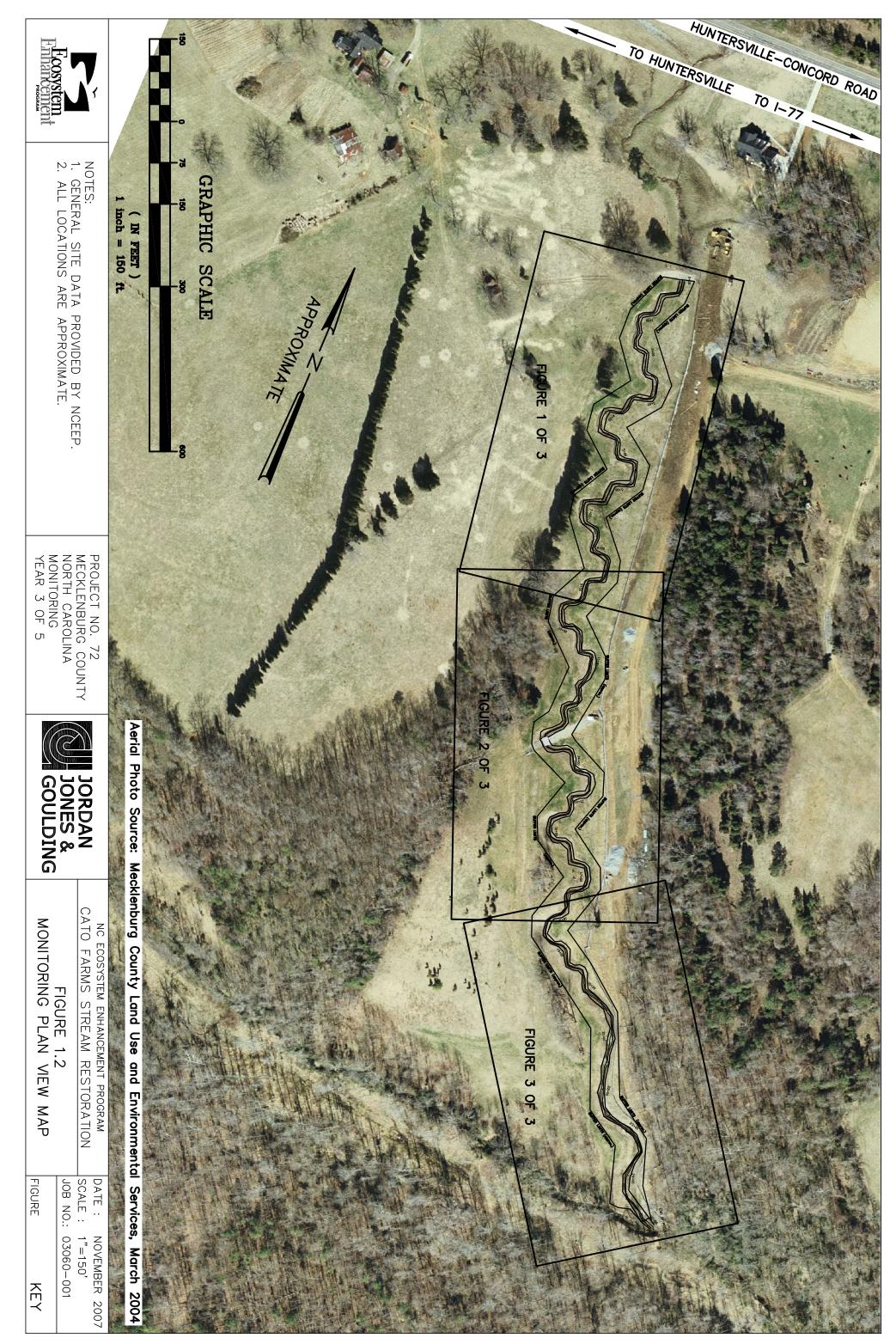
Methods employed for the Cato Farms Stream Restoration Project were a combination of those established by standard regulatory guidance and procedures documents and the North Carolina State University and Soil and Environmental Consultants monitoring reports. Geomorphic and stream assessments were performed following guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration a Natural Channel Design Handbook (Doll et al, 2003). Vegetation assessments were conducted following the NCEEP 2004 Stem Counting Protocol which consists of counting woody stems within the established vegetation plots. JJG used the *Manual of the Vascular Flora of the Carolinas* by Albert R. Radford, Harry E. Ahles, and C. Ritchie Bell as the taxonomic standard for vegetation nomenclature for this report.

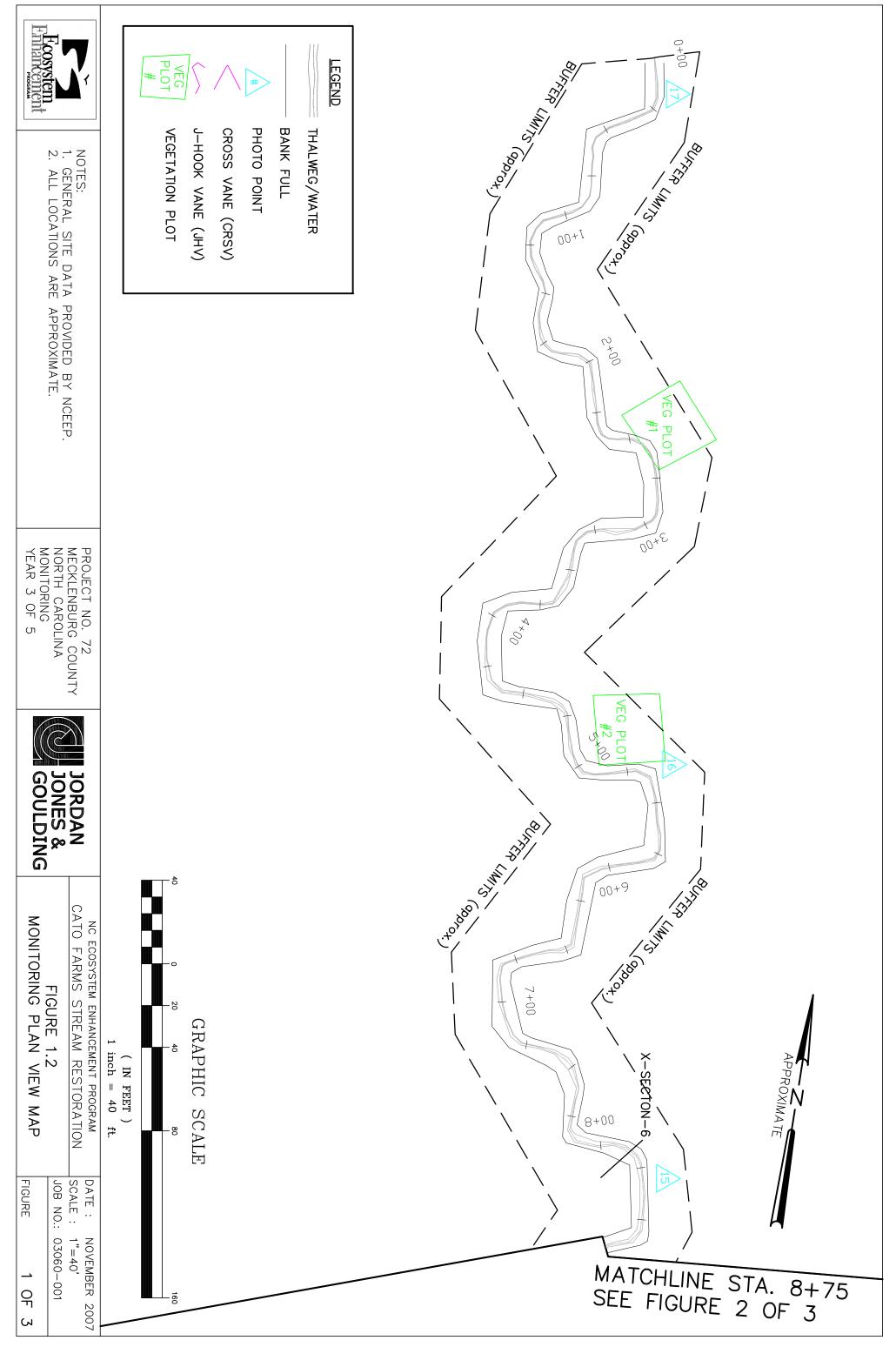
SECTION 4 REFERENCES

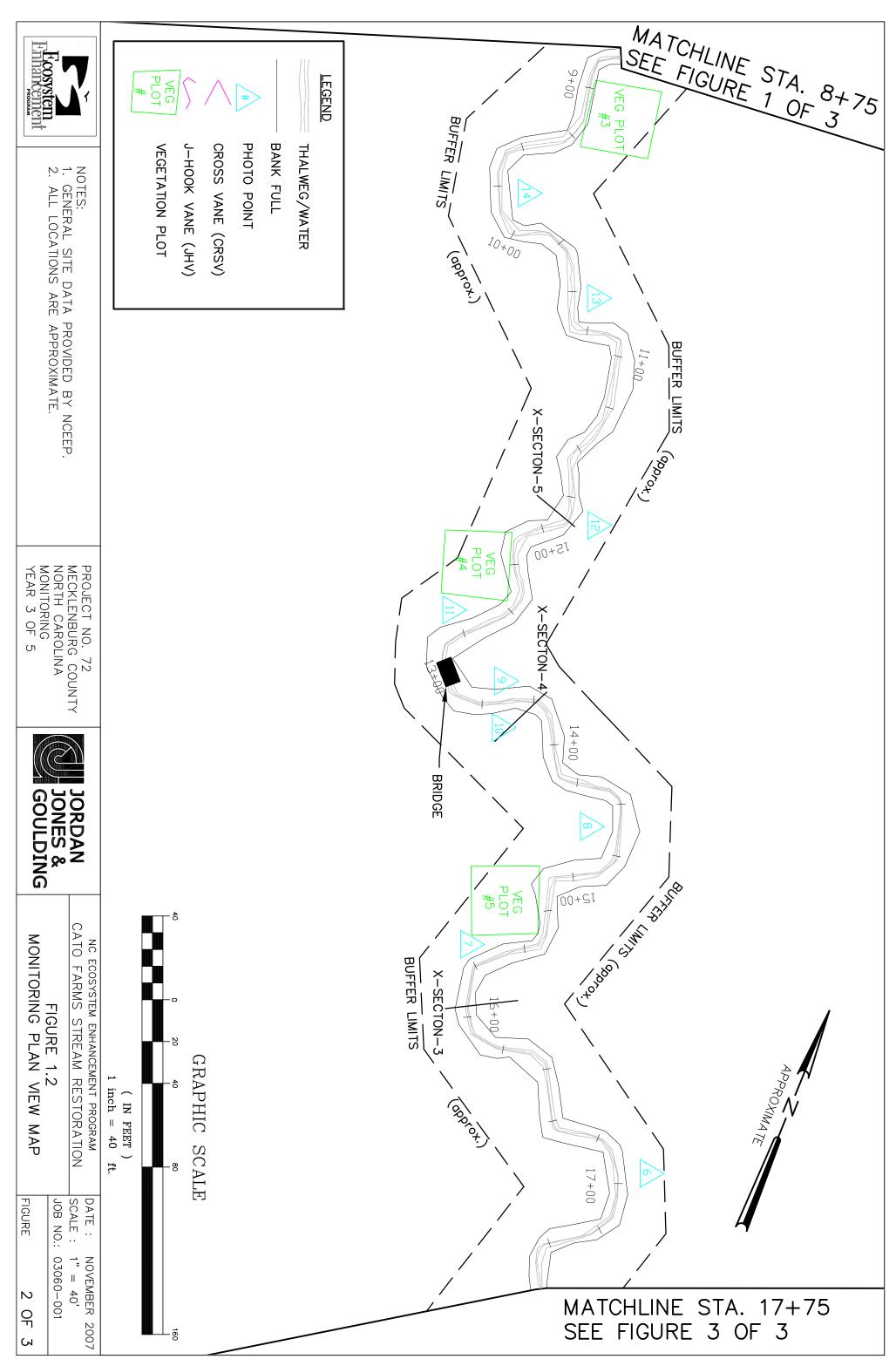
SECTION 4 REFERENCES

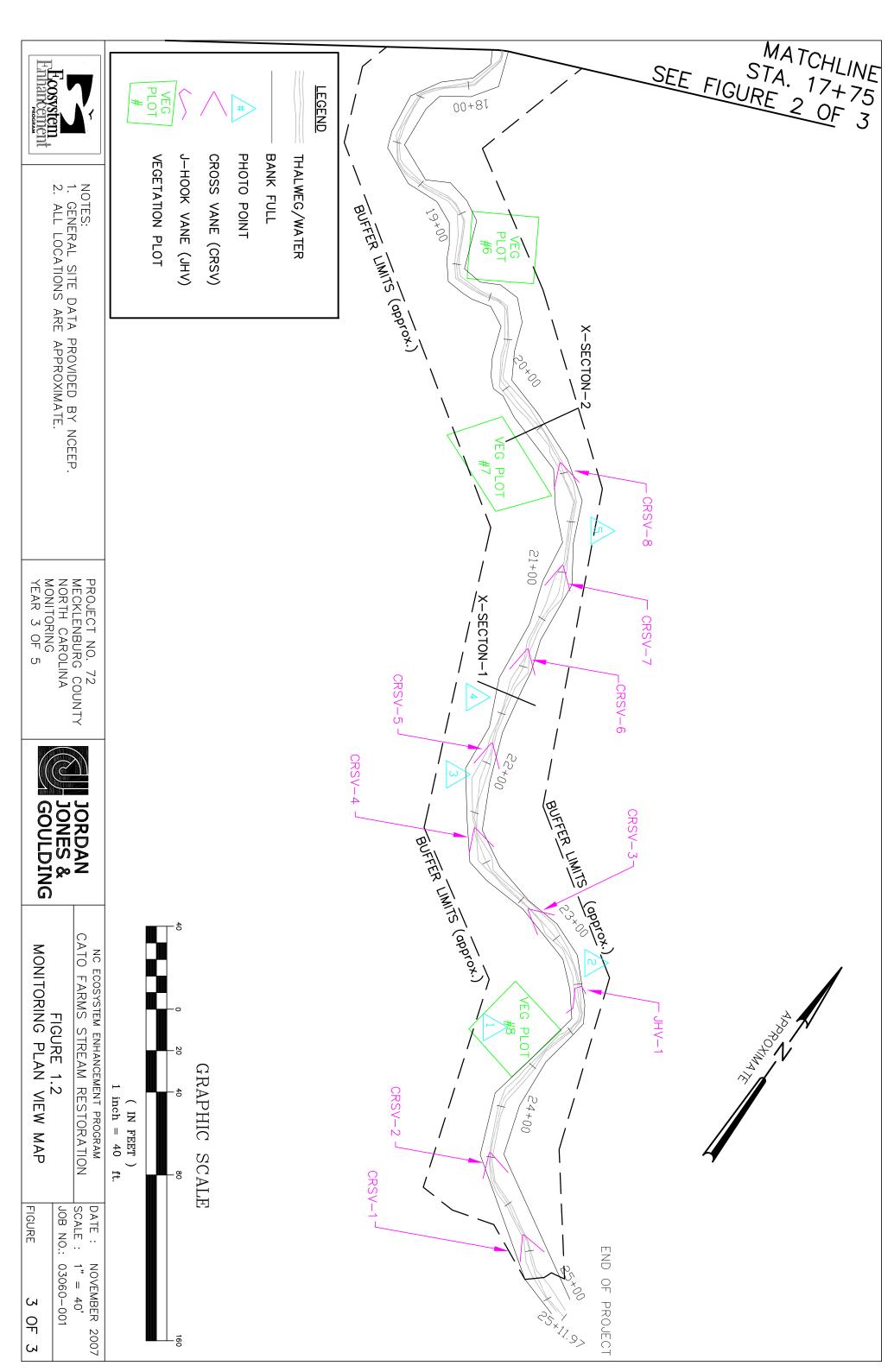
Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E., 2003. Stream Restoration A Natural Channel Design Handbook.

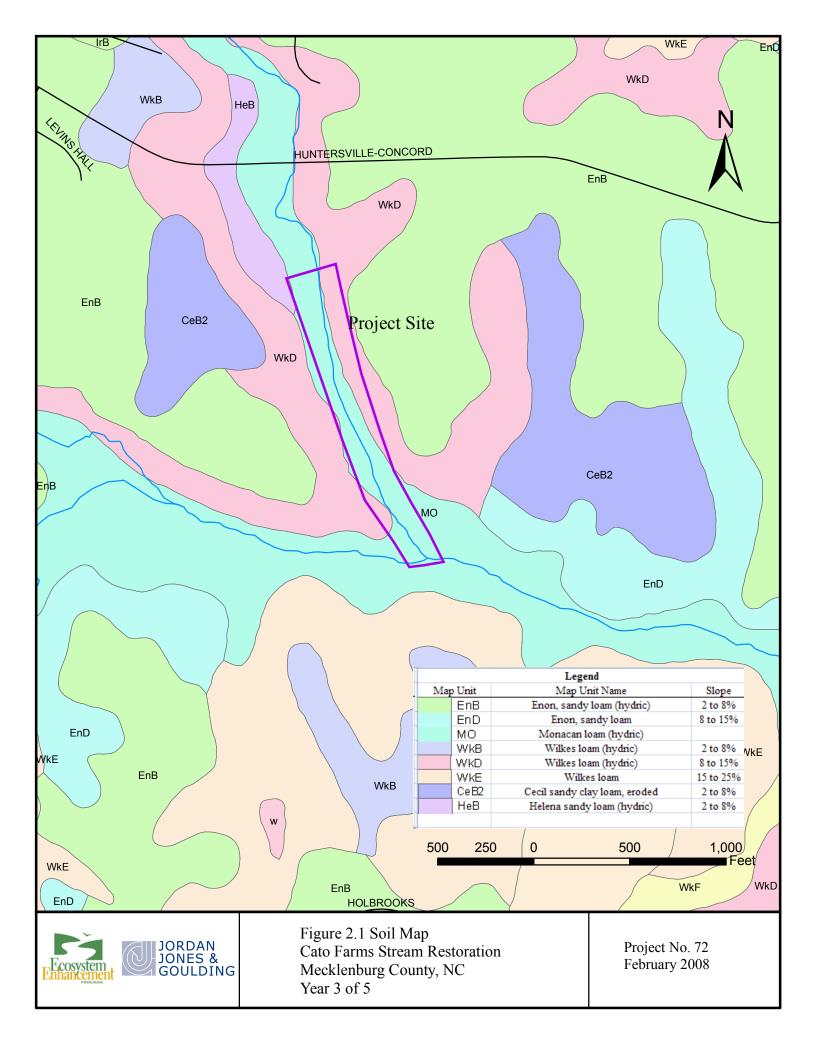

Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.


Radford, A.E., H.A. Ahles, and C.R. Bell. 1964. *Manual of the vascular flora of the Carolinas*. University of North Carolina Chapel Hill.


Rosgen, D L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.




SECTION 5 FIGURES



SECTION 6 APPENDICES

- **Appendix 1 Vegetation Raw Data**
- **Appendix 2 Geomorphic and Stream Stability Data**
- **Appendix 3 Integrated Current Condition Plan View**

APPENDIX 1 VEGETATION RAW DATA

1. Vegetation Survey Data Tables*

2. Representative Vegetation Current Condition Photos

3. Vegetation Monitoring Plot Photos

*Raw data tables have been provided electronically.

		Stem C	ounts for Pl	anted Specie	es Arranged	l by Plot – M	IY-2007				
			Vegetat	ion Plots M	onitored (M	[Y-2007)			MY 3-2007	MY 2-2006	MY 1-2005
Species	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8	Totals	Totals	Totals
Shrubs											
Aronia arbutifolia	0	0	0	0	2	0	0	0	2	3	13
Cephalanthus occidentalis	0	2	1	2	1	0	0	0	6	4	8
Cornus amomum	3	0	2	4	10	0	3	10	32	32	44
Cornus sericea	0	0	0	3	0	0	0	0	3	3	5
Salix nigra*	4	1	1	0	1	4	3	2	16	16	16
Sambucus canadensis	0	2	1	0	0	0	0	0	3	2	5
Trees											
Acer negundo*	1	2	2	2	2	1	4	4	18	18	18
Carpinus caroliniana	0	0	0	0	0	0	0	0	0	0	1
Carya aquatica	0	0	0	0	0	0	0	0	0	0	3
Fraxinus pennsylvanica*	0	1	0	0	0	2	2	0	5	5	5
Juglans nigra	0	0	0	0	0	0	0	0	0	0	1
Nyssa sylvatica	1	0	0	0	0	0	0	0	1	1	1
Populus deltoides*	0	0	0	1	1	1	0	2	2	2	2
Quercus alba*	0	1	0	0	0	1	1	2	5	5	6
Quercus michauxii*	1	2	0	3	0	3	2	2	14	14	14
Total Planted Live Stems (2007)	10	12	8	15	17	13	17	24	105	N/A	N/A
Average # of Stems (2007)						15					
Percent Survival (2007)	77%	86%	80%	100%	94%	72%	61%	92%		Avg = 74%)
Stem Density (2007)						600					
*Numerous volunteer stems were obs	erved										

Feature Issue		Station Numbers	Suspected Cause	Photo ID
		0+50 - 0+51	Scour under matting, loose matting - RB	
		2+20 -2+30	Scour under matting, loose matting - LB	
		2+45 - 2+55	Bare bank - LB	
		3+23	Bank erosion - stream widened - BB	
		4+10 - 4+30	Bank erosion under matting - BB	
		4+95 - 5+10	Bank erosion - RB	
		5+75 - 5+80	Bank erosion under matting - LB	
		6+05 - 6+15	Bank erosion under matting - RB	
		6+50 - 6+51	Bank erosion under matting - LB	
	Reach 1	7+25 7+27	Bank erosion under matting - RB	
		7+50 - 7+52	Bank erosion under matting - LB	
Bank Erosion - Moderate		7+75 - 7+77	Bank erosion under matting - LB	1
		8+90 - 8+92	Bank erosion under matting - LB	
		10+65 - 10+75	Bare bank - RB	
		11+30 - 11+50	Bank scour - LB	
		13+00	Storm flow overflow along east side of bridge/some erosion - LB	
		14+75 - 14+76	Bank erosion under matting - LB	
		17+25 - 17+35	Bank erosion under matting - LB	
		18+50 - 18+75	No vegetation cover - RB	
		20+10 - 20+13	Bank scour - RB	
	Deash 2	22+00 - 22+50	Bank erosion under matting - RB	
	Reach 2	23+35 - 23+50	Bank erosion under matting - RB	
		23+50 - 23+70	Moderate bank erosion - RB	
Bank Erosion - Severe	Reach 1	9+15 - 9+25	Severe bank erosion under matting - LB	_ 2
Bank Erosion - Severe	Reach 1	17+50 - 17+70	Bank erosion eroded bank severe - RB	Z
		10+25 - 10+55	Poor vegetative cover - LB	
		14+25 - 15+10	Bare benchriparian area - RB	
Vegetative Cover - Poor		15+75 - 15+85	Bare slope/exposed - RB	3
		16+25 - 16+50	Baren benches & points/dead stakes - RB	
		18+25 - 18+75	Bare bank, dead live stakes - BB	
In Stream Vagatation	Reach 1	12+25 - 12+75	Soft rush in main channel	4
In-Stream Vegetation	Reach 2	24+25	Soft rush in main channel	4

1. Bank Erosion: Moderate 3/22/2007

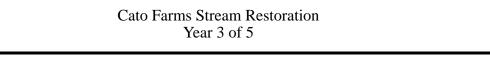
2. Bank Erosion: Severe 3/22/2007

Date:

Project No.:

November 2007

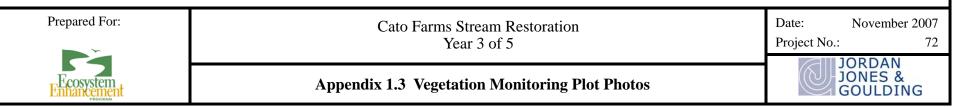
JORDAN JONES & GOULDING


72

3. Streambank Cover Poor 3/22/2007

Enhancement

1. Monitoring Plot 1 8/16/2007

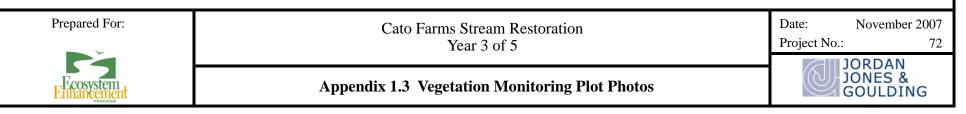

2. Monitoring Plot 2 8/16/2007

3. Monitoring Plot 3 8/16/07

4. Monitoring Plot 4 8/16/07

5. Monitoring Plot 5 8/16/2007

7. Monitoring Plot 7


8/172007

6. Monitoring Plot 6 8/17/2007

8. Monitoring Plot 8 8/17/2007

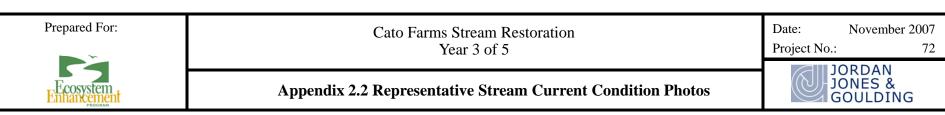
APPENDIX 2 GEOMORPHIC AND STREAM STABILITY DATA

- 1. Stream Current Condition Table
- 2. Representative Stream Current Condition Photos
- 3. Stream Photo Station Photos
- 4. Stream Cross-Section Photos
- 5. Qualitative Visual Stability Assessment
- 6. Cross-Section Plots and Raw Data Tables*
- 7. Longitudinal Plots and Raw Data Tables*
- 8. Pebble Count Plots and Raw Data Tables*

*Raw data tables have been provided electronically.

Feature Issue	Station Numbers		Photo ID
	0+50 - 0+51	Scour under matting, loose matting - RB	
	2+20 -2+30	Scour under matting, loose matting - LB	
	2+45 - 2+55	Bare bank - LB	
	3+23	Bank erosion - stream widened - BB	
	4+10 - 4+30	Bank erosion under matting - BB	
	4+95 - 5+10	Bank erosion - RB	
	5+75 - 5+80	Bank erosion under matting - LB	
	6+05 - 6+15	Bank erosion under matting - RB	
	6+50 - 6+51	Bank erosion under matting - LB	
	7+25 7+27	Bank erosion under matting - RB	
	7+50 - 7+52	Bank erosion under matting - LB	
Bank Erosion - Moderate	7+75 - 7+77	Bank erosion under matting - LB	1
Bank Erosion - Moderate	8+90 - 8+92	Bank erosion under matting - LB	1
	10+65 - 10+75	Bare bank - RB	
	11+30 - 11+50	Bank scour - LB	
	12.00	Storm flow overflow along east side of bridge/some	
	13+00	erosion - LB	
	14+75 - 14+76	Bank erosion under matting - LB	
	17+25 - 17+35	Bank erosion under matting - LB	
	18+50 - 18+75	No vegetation cover - RB	
	20+10 - 20+13	Bank scour - RB	
	22+00 - 22+50	Bank erosion under matting - RB	
	23+35 - 23+50	Bank erosion under matting - RB	
	23+50 - 23+70	Moderate bank erosion - RB	
	9+15 - 9+25	Severe bank erosion under matting - LB	2
Bank Erosion - Severe	17+50 - 17+70	Bank erosion eroded bank severe - RB	2
	5+40	Bank slump - LB	
Bank Slump	16+70 - 16+90	Bank failure/bank erosion - BB	3
Mid-Channel Bar	7+60	Mid-channel bar channel, over widened	4
	22+50	Depositional lateral bar behind cross vane arm	-
Aggradation	22+90	Deposition in scour pool behind cross vane	*
	12+25 - 12+75	Soft rush in main channel	
In-Stream Vegetation	24+25	Soft rush in main channel	4
	10+25 - 10+55	Poor vegetative cover - LB	1
	14+25 - 15+10	Bare benchriparian area - RB	
Vegetative Cover - Poor	15+75 - 15+85	Bare slope/exposed - RB	5
	16+25 - 16+50	Baren benches & points/dead stakes - RB	Ĩ
	18+25 - 18+75	Bare bank, dead live stakes - BB	
	21+00	Moderate scour behind cross vane arm - RB	1
	21+50	Moderate bank erosion in front of cross vane arm - LB	1
	22+50	Moderate bank crosson in Hont of cross vane arm - RB	1
Structure - Stressed	22+90	Severe scour pool behind cross vane arm - LB	6
	22+90	Severe scour pool behind J-Hook - LB	-
	23+33	Scour behind cross vane arm - RB	-
B - Left Bank Looking Dov		Bank Looking Downstream, BB - Both Banks, TOB - To	on of Bank
			op of Dank
lease refer to Appendix 2.2		0108	
Cells noted with a (*) potogra	aph unavailable		

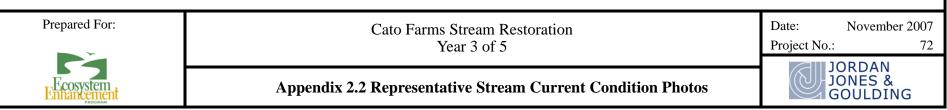
Appendix 2.1 Stream Current Condition Table Cato Farms Stream Restoration Year 3 of 5



1. Bank Erosion: Moderate

3/21/2007

2. Bank Erosion: Severe 3/21/2007


File name

3. Bank Slump 3/21/2007

4. In-stream Vegetation/Mid-Channel Bar 3/21/2007

File name

5. Vegetation Cover-Poor 3/21/2007

6. Structure-Stressed 3/21/2007

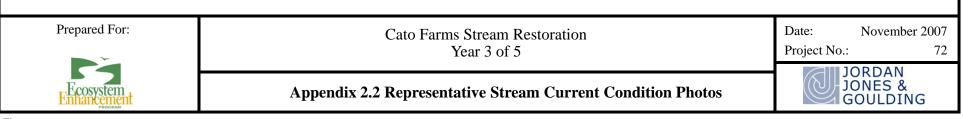


Photo Point 1: Upstream-8/17/2007

Photo Point 1: Downstream-8/17/2007

Photo Point 2: Upstream-8/17/2007

Photo Point 2: Downstream-8/17/2007

Photo Point 3: Upstream-8/17/2007

Photo Point 3: Downstream-8/17/2007

Photo Point 4: Upstream-8/17/2007

Photo Point 4: Downstream-8/17/2007

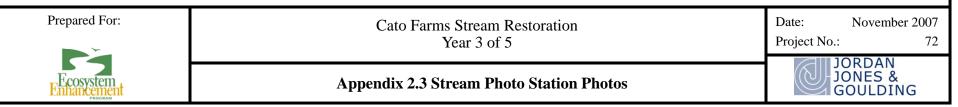


Photo Point 5: Upstream-8/17/2007

Photo Point 5: Downstream-8/17/2007

Photo Point 6: Upstream-8/17/2007

Photo Point 6: Downstream-8/17/2007

Photo Point 7: Upstream-8/17/2007

Photo Point 7: Downstream-8/17/2007

Photo Point 8: Upstream-8/17/2007

Photo Point 8: Downstream-8/17/2007

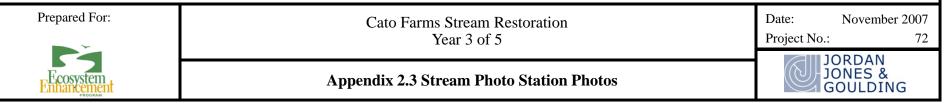


Photo Point 9: Upstream-8/17/2007

Photo Point 9: Downstream-8/17/2007

Photo Point 10: Upstream-8/17/2007

Photo Point 10: Downstream-8/17/2007

Photo Point 11: Upstream-8/17/2007

Photo Point 11: Downstream-8/17/2007

Photo Point 12: Upstream-8/17/2007

Photo Point 12: Downstream-8/17/2007

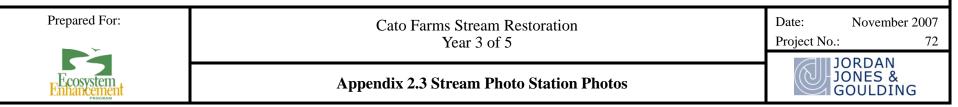


Photo Point 13: Upstream-8/17/2007

Photo Point 13: Downstream-8/17/2007

Photo Point 14: Upstream-8/17/2007

Photo Point 14: Downstream-8/17/2007

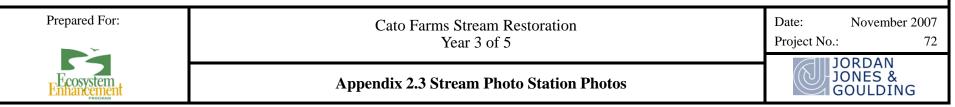


Photo Point 15: Upstream-8/17/2007

Photo Point 15: Downstream-8/17/2007

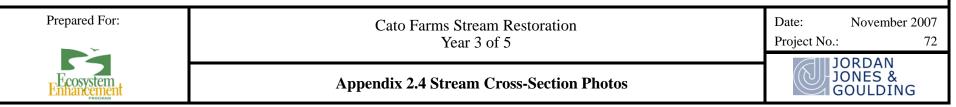
Photo Point 16: Upstream-8/17/2007

Photo Point 16: Downstream-8/17/2007

Photo Point 17: Upstream-8/17/2007

Photo Point 17: Downstream-8/17/2007

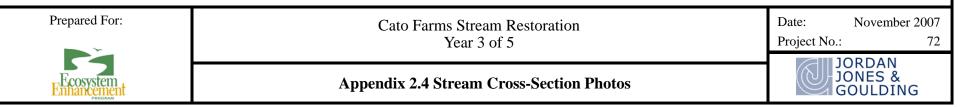
Cross-Section 1: Upstream-8/17/2007


Cross-Section 1: Downstream-8/17/2007

Cross-Section 2: Upstream-8/17/2007

Cross-Section 2: Downstream-8/17/2007

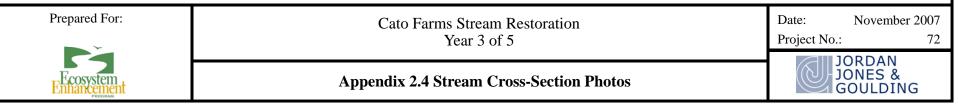
Cross-Section 3: Upstream-8/17/2007


Cross-Section 3: Downstream-8/17/2007

Cross-Section 4: Upstream-8/17/2007

Cross-Section 4: Downstream-8/17/2007

Cross-Section 5: Upstream-8/17/2007


Cross-Section 5: Downstream-8/17/2007

Cross-Section 6: Upstream-8/17/2007

Cross-Section 6: Downstream-8/17/2007

Reach I (2000 linear le		-	1	-		
Feature Category		(# Stable) Number Performing as Intended	Total Number assessed per 2007 survey	Total Number/ feet in unstable state	% Perform in Stable Condition	Feature Perform Mean or Total
	1. Present?	8			100%	
	2. Armor Stable?	8			100%	
A. Riffles	3. Facet grade appears stable?	8	8	N/A	100%	75%
	4. Minimal evidence of embedding/fining?	0			0%	
	5. Length appropriate?	-			-	
	1. Present?	39			100%	
B. Pools	2. Sufficiently deep?	39	39	N/A	100%	100%
	3. Length Appropriate?	-			-	
C. Thalweg	1. Upstream of meander bend centering?	40	47	N/A	95%	98%
C. Thatweg	2. Downstream of meander centering?	47	47	\mathbf{N}/\mathbf{A}	100%	90 /0
	1. Outer bend in state of limited/controlled erosion?	46			98%	
D. Meanders	2. Of those eroding, # w/concomitant point bar formation?	47	47	N/A	100%	99%
D. Weanders	3. Apparent Rc within spec?	47	7/	11/11	100%	JJ /0
	4. Sufficient floodplain access and relief?	47			100%	
E. Bed General	1. General channel bed aggradation areas (bar formation)?	N/	΄Δ	1/50	98%	99%
L. Ded General	2. Channel bed degradation - areas of increasing down-cutting or head cutting?			0/0	100%	JJ /0
F. Bank Performance*	1. Actively eroding, wasting, or slumping bank	N/	'A	19/176	96%	96%
	1. Free of back or arm scour?					
G. Vanes/J-Hooks, etc	2. Height appropriate?			N/A		
0. <i>valies/j=1100ks</i> , etc	3. Angle and geometry appear appropriate?			14/74		
	4. Free of piping or other structural failures?					
H. Wads/ Boulders	1. Free of scour?			N/A		
II. Wads/ Dourders	2. Footing stable?			1 1/2 1		

Reach 1 (2000 linear feet)

*Although bank erosion is occuring along the reach, only 35 feet are actively eroding.

Reach 2 (500 linear feet	.)	Ĩ				
Feature Category		(# Stable) Number Performing as Intended	Total Number assessed per 2006 survey	Total Number/ feet in unstable state	% Perform in Stable Condition	Feature Perform Mean or Total
	1. Present?					
	2. Armor Stable?					
A. Riffles	3. Facet grade appears stable?			N/A		
	4. Minimal evidence of embedding/fining?					
	5. Length appropriate?			•	•	
	1. Present?	8			100%	
B. Pools	2. Sufficiently deep?	8	8	N/A	100%	100%
	3. Length Appropriate?	-			-	
C. Thalweg	1. Upstream of meander bend centering?	4	4	N/A	100	100%
e. marweg	2. Downstream of meander centering?	4	•	10/11	100	10070
	1. Outer bend in state of limited/controlled erosion?	4			100%	
D. Meanders	2. Of those eroding, # w/concomitant point bar formation?	N/A	4	N/A	100%	100%
D. Meunders	3. Apparent Rc within spec?	4		10/11	100%	10070
	4. Sufficient floodplain access and relief?	4			100%	
E. Bed General	1. General channel bed aggradation areas (bar formation)?	N/	Ά	0/5	99%	100%
	2. Channel bed degradation - areas of increasing down-cutting or head cutting?	- 0		0/0	100%	
F. Bank Performance*	1. Actively eroding, wasting, or slumping bank	N/	'A	4/88	91%	91%
	1. Free of back or arm scour?	5			45%	
G. Vanes/J-Hooks, etc	2. Height appropriate?	-	11	N/A	-	73%
5. , anos, s 1100ks, etc	3. Angle and geometry appear appropriate?	-		11/11	-	10/0
	4. Free of piping or other structural failures?	11			100%	
H. Wads/ Boulders	1. Free of scour?			N/A		
	2. Footing stable?			1 1/ 1 1		

Reach 2 (500 linear feet)

*Although bank erosion is occurring along the reach, the banks are not actively eroding

Stream Name: Cato Farms Cross-Section: 1

Feature: Riffle

	As-Built-2004			2005			2006			2007	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0.00	90.36	(XSPIN)	0.00	90.53		-24.02	91.24	
			4.81	89.90	(XS)	2.00	90.30		-12.16	91.35	
			6.73	89.74	(XS)	4.00	90.13		-7.83	91.25	
			9.79	88.80	(XS)	6.00	89.97		-1.40	91.13	
			12.11	88.66	(XS)	8.00	89.66		0.80	90.73	
			14.15	88.54	(XS)	10.00	88.94		2.75	90.17	
			15.54	88.42	В	12.00	88.59	LBKF	5.15	90.03	
			16.74	87.79	(XS)	16.00	88.38		7.25	89.74	
			17.28	87.24	(XS)	17.00	87.88		8.98	89.23	
			18.31	86.79	(XS)	18.00	87.29	LEW	9.86	88.87	
			18.78	86.72	(XS)	18.80	87.11	TW	13.24	88.80	BKF
			19.05	86.82	(XS)	19.70	87.29	REW	14.83	88.49	
			19.43	87.04	(XS)	20.90	87.99		17.23	87.88	
			19.88	87.57	(XS)	22.60	88.59	RBKF	17.52	87.30	LEW
			21.78	88.51	(XS)	24.00	88.91		17.82	87.14	TW
	No As-Built Provided		24.90	88.85	(XS)	26.00	89.02		18.51	87.30	REW
	No As-Duilt I Tovideu		27.04	89.17	(XS)	28.00	89.38		18.75	87.66	
			29.97	90.48	(XS)	30.00	90.38		21.38	88.35	
			32.29	90.84	(XSPIN)	30.50	90.58		22.32	88.80	
						31.50	90.78	R HUB	25.72	88.92	
									27.26	89.26	
									28.51	89.82	
									29.21	90.03	
									33.6	91.22	
									36.47	91.73	
									38.88	92.19	
									42.27	92.62	
									43.82	92.94	
									47.24	93.23	
									51.02	93.49	
									53.97	93.57	
									57.75	93.69	

Stream Name: Cato Farms Cross-Section: 2

Feature: Riffle

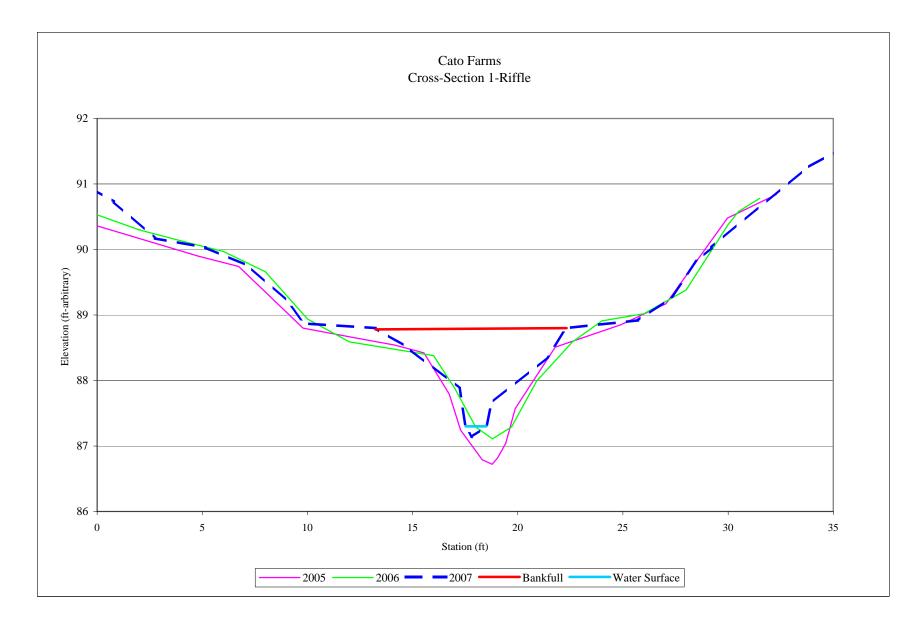
As-Bui	ilt-2004			2005			2006			2007	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
		-	0.00	91.44	(XSPIN)	-0.87	91.70		-39.80	93.31	
			2.45	91.04	(XS)	0.00	91.44	LHUB	-29.83	93.00	
			5.05	90.42	(XS)	2.28	91.15		-21.56	92.93	
			7.48	89.68	(XS)	4.28	90.62		-16.98	92.88	
			9.58	89.68	(XS)	6.28	89.98		-12.56	92.50	
			11.85	89.55	(XS)	7.48	89.68		-8.17	92.20	
			12.24	89.17	(XS)	9.28	89.69		-5.28	92.09	
			14.32	88.97	(XS)	11.28	89.69	LBKF	-3.81	91.84	
			15.12	88.97	(XS)	12.78	89.29		-2.46	91.61	
			15.98	89.22	(XS)	13.28	89.03	LEW	1.53	91.22	
			17.12	89.34	(XS)	13.98	88.92	TW	3.58	90.77	
			19.99	88.87	(XS)	14.78	89.03	REW	5.28	90.30	
			21.13	89.18	(XS)	16.28	89.65		6.28	89.81	
			22.56	89.67	(XS)	17.28	89.44		7.61	89.82	
			24.23	89.49	(XS)	21.28	89.60		10.44	89.84	LBKF
			26.06	89.48	(XS)	23.28	89.69	RBKF	12.35	89.62	
No As-Bui	lt Provided		27.25	89.85	(XS)	26.28	89.71		13.46	89.17	
			29.85	90.87	(XS)	27.28	89.97		13.74	89.03	LEW
			33.10	91.15	(XS)	28.78	90.60		13.83	89.04	TW
			35.63	91.35	(XSPIN)	30.78	91.01		14.47	89.03	REW
						32.28	91.11		14.82	89.77	
						35.63	91.32	R HUB	16.77	89.68	
									19.16	89.56	
									21.89	89.84	RBKF
									23.99	89.67	
									25.78	89.65	
									27.58	90.11	
									28.72	90.63	
									31.25	91.12	
									36.93	91.72	
									39.26	91.87	
									43.63	92.15	
									48.39	92.23	

Stream Name: Cato Farms

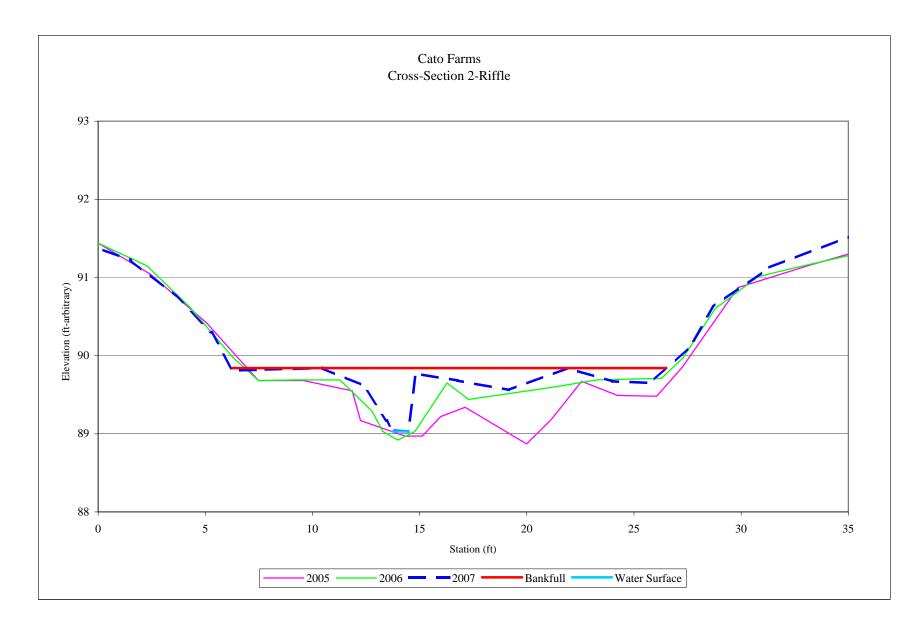
Cross-Section: 3 Feature: Pool

	As-Built-2004			2005			200	6		2007	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0.35	93.84	(XSPIN)	0.00	94.18		1.21	93.85	
			2.57	93.64	XS	0.30	93.88	LHUB	4.54	93.48	
			5.38	93.29	(XS)	2.30	93.58		9.46	93.35	
			8.97	93.13	(XS)	5.30	93.42		14.47	93.36	
			9.05	93.13	(XS)	7.30	93.26	Start Left Bench	22.50	93.24	
			13.45	93.22	(XS)	11.30	93.16		25.46	93.31	BKF
			17.98	93.08	(XS)	16.30	93.21		26.56	93.04	
			20.90	93.19	(XS)	20.30	93.19		27.38	92.41	
			25.33	93.16	(XS)	25.80	93.22	LBKF/End Left Bench	27.62	92.23	LEW
			26.54	92.64	(XS)	26.30	92.91		29.76	91.45	
			28.16	91.97	(XS)	27.30	91.83	LEW	29.98	91.43	TW
			28.79	91.91	(XS)	29.70	91.18	TW	30.77	92.23	REW
			29.04	91.30	(XS)	30.60	91.83	REW	31.71	92.66	
	No As-Built Provided		29.45	91.26	(XS)	31.80	92.81		32.81	93.32	
			30.36	91.52	(XS)	33.50	93.22	RBKF	34.67	94.00	
			30.98	92.36	(XS)	35.10	94.22	RHUB	35.69	94.67	
			31.98	92.96	(XS)				37.72	95.03	
			33.61	93.73	(XS)				39.54	96.02	
			35.02	94.25	(XSPIN)				42.22	97.15	
			44.78	98.08	(TOB)				44.24	97.7	
									45.4	98.06	
									47.46	98.26	
									49.3	98.74	
									53.72	99.36	
									57.69	100.02	
									61.32	100.45	
									65.19	100.79	

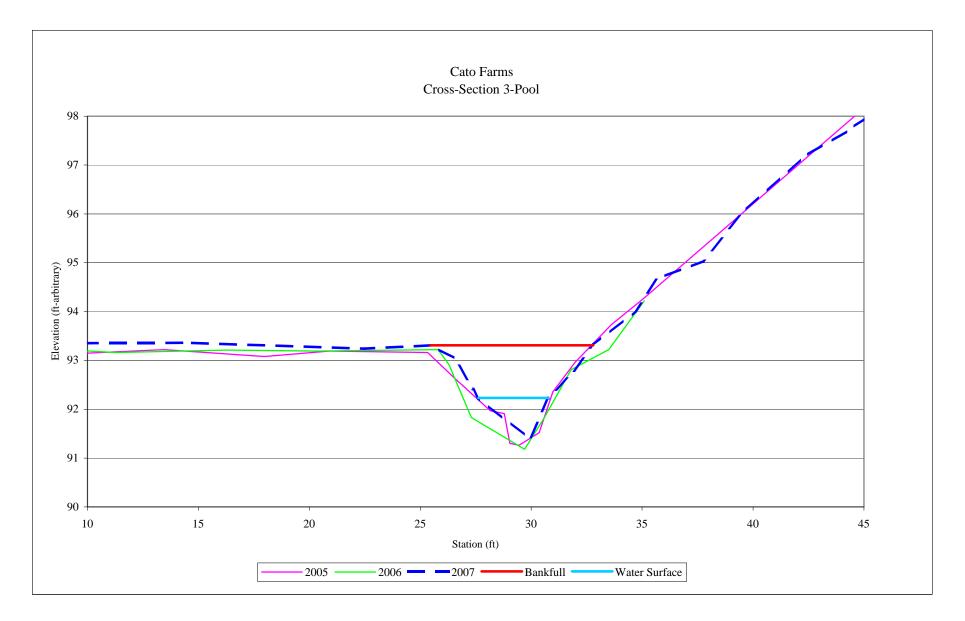
Stream Name: Cato Farms Cross-Section: 4

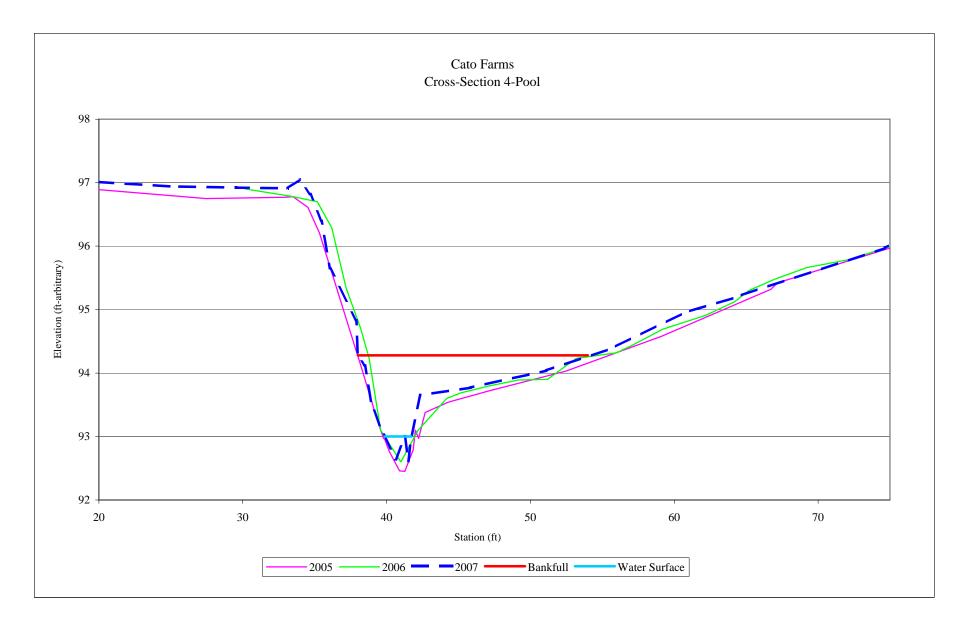

Feature: Pool

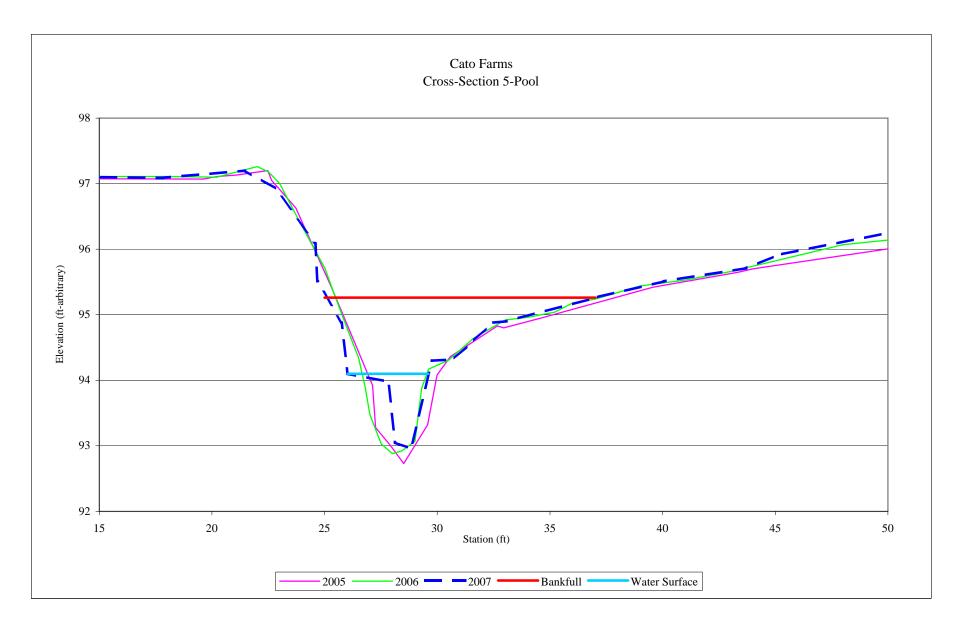
	As-Built-2004			2005			2006		2007		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0.65	96.67	(X4)	30.19	96.9		-10.28	96.73	
			11.49	97.05	(X4)	33.49	96.78		-6.37	96.82	
			27.45	96.75	(X4)	35.19	96.7		-1.47	96.8	
			32.96	96.77	(X4)	36.19	96.29		2.93	96.97	
			33.49	96.78	(X4LP)	37.19	95.34		7.79	96.96	
			34.53	96.61	(X4)	38.19	94.71		14.6	97.02	
			35.33	96.21	(X4)	38.79	94.23	LBKF	19.36	97.02	
			38.23	94.1	В	39.59	93.1	LEW	24.9	96.94	
			39.37	93.25	(X4)	40.99	92.6	TW	29.54	96.92	
			39.77	92.98	(X4)	42.19	93.1	REW	33.13	96.91	
			39.88	92.95	(X4)	44.19	93.6		33.95	97.05	
			40.2	92.76	(X4)	45.19	93.69		34.7	96.82	
			40.9	92.46	(X4)	47.19	93.8		35.47	96.4	
			41.27	92.45	(X4)	49.19	93.89		36.06	95.65	
			41.85	92.79	(X4)	51.19	93.9		37.9	94.83	
			42.01	93.1	(X4)	53.19	94.23	RBKF	38	94.28	LBI
	No As-Built Provided		42.23	92.97	(X4)	55.99	94.32		38.5	94.12	
			42.68	93.38	(X4)	57.19	94.45		38.94	93.52	
			44.27	93.54	(X4)	59.19	94.69		39.62	93.12	
			47.12	93.72	(X4)	62.19	94.91		40.64	92.64	
			52.45	94.03	(X4)	64.19	95.12		41.28	93	LEV
			59.11	94.58	(X4)	65.19	95.3		41.52	92.61	TV
			66.72	95.32	(X4RPIN)	66.99	95.48		41.73	93	RE
			67.18	95.42	(X4)	69.19	95.66		42.35	93.65	
			80.53	96.36	(X4)	72.19	95.79		45.83	93.77	
			94.52	96.99	(X4)	75.19	96.01		51.1	94.04	
			116.45	97.8	(X4)	77.19	96.23		55.79	94.4	
			30.81	99.22	(X4LPOSTTOP)	80.19	96.47		60.56	94.94	
			66.88	97.67	(X4RPOSTTOP)	82.19	96.72		64.18	95.19	
									74.66	95.97	
									77.54	96.26	
									93.11	97.11	
									105.55	97.56	

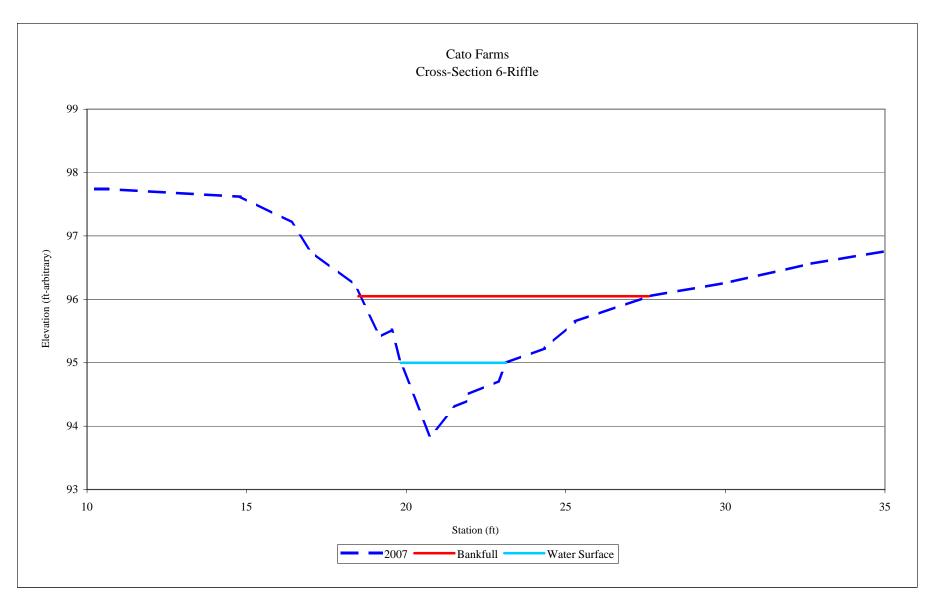

Stream Name:	Cato Farms
Cross-Section:	5

	As-Built-2004			2005			2006			2007	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Note
			0.00	97.00	(X5PIN)	10.01	97.16		5.18	97.15	
			9.30	97.08	(X5)	14.01	97.11		11.43	97.11	
			19.62	97.07	(X5)	18.01	97.11		17.82	97.09	
			20.21	97.11	(X5LP)	20.21	97.10		21.47	97.20	
			21.08	97.13	(X5)	22.01	97.26		22.80	96.93	
			22.48	97.20	(X5)	22.51	97.18		24.59	96.09	
			22.65	97.05	(B)	23.01	97.00		24.68	95.51	
			23.72	96.63	(X5)	24.01	96.34		25.76	94.88	
			25.30	95.42	(X5)	25.01	95.71		26.02	94.10	LEV
			26.00	94.85	(X5)	25.51	95.24	LBKF/TOB	27.83	93.98	
			27.13	93.92	(X5)	26.01	94.78		28.13	93.05	
			27.26	93.28	(X5)	26.51	94.34		28.83	92.96	TW
			27.93	93.00	(X5)	26.81	93.88	LEW	29.77	94.30	
			28.51	92.73	(X5)	27.01	93.48		30.71	94.32	
			29.57	93.32	(X5)	27.51	93.03		31.47	94.56	
			29.99	94.08	(X5)	28.01	92.88	TW	32.46	94.88	REV
	No As-Built Provided		30.58	94.36	(X5)	28.41	92.92		33.07	94.90	
	No As-Dulit Provided		32.67	94.83	(X5)	29.01	93.07		37.02	95.26	RBK
			32.95	94.80	(B)	29.31	93.88	REW	40.06	95.51	
			34.62	94.95	(X5)	29.61	94.17		43.71	95.71	
			39.57	95.42	(X5)	30.51	94.31		45.11	95.91	
			43.37	95.65	(X5)	31.61	94.64		50.29	96.27	
			44.01	95.70	(X5RP)	33.01	94.92		55.87	96.38	
			51.27	96.07	(X5)	34.01	94.96		60.12	96.50	
			68.43	96.79	(X5)	35.21	95.04		65.64	96.68	
			84.47	97.77	(X5)	36.01	95.18		67.99	96.81	
						37.01	95.24	REW			
						39.01	95.44				
						41.01	95.53				
						43.01	95.66				
						48.01	96.07				
						58.01	96.42				
						62.01	96.56				
						64.01	96.65			l i	


	2007	
Station	Elevation	Notes
8.50	97.74	
10.64	97.74	
14.81	97.62	
16.39	97.22	
17.03	96.75	
18.38	96.23	
19.19	95.41	
19.55	95.52	
19.83	95.00	LEW
20.75	93.84	TW
21.54	94.31	
21.91	94.40	
21.97	94.51	
22.89	94.71	
23.13	95.00	REW
24.34	95.23	
25.29	95.65	
27.60	96.05	BKF
30.21	96.28	
32.53	96.55	
36.81	96.91	
41.05	97.08	
41.06	97.05	
45.14	97.14	


Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5


Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5


Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Appendix 2.6 Cross-Section Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Cato Farms MY-2007 Longitudinal Profile

Station	TW-2005	Notes
10.2	97.17 96.92	TR Thalweg
23.33	96.62	Thatweg
35.88	97.09	Max Pool
44.78	97.07	TR
53.15	96.8	Thalweg
58.4	96.54	TP
63.36 67.07	96.41 96.77	Thalweg Max Pool
77.88	96.76	Trun
83.13	96.7	Thalweg
89.22	96.67	Thalweg
94.26	96.62	Thalweg
108.85	96.53	Thalweg
114.03 114.68	96.51 96.57	Thalweg Thalweg
122.34	96.49	Thalweg
131.42	96.44	Thalweg
137.54	96.44	Thalweg
144.31	96.42	Thalweg
149.16	96.43	Thalweg
153.99 159.59	96.05 96.47	TP
165.3	96.36	Thalweg TR
171.79	96.3	Thalweg
176.87	95.96	TP
180.54	96.21	Thalweg
185.42	96.21	Trun
189.39	95.63	TP
193.5	95.74	Thalweg
199.94 206.73	95.58	Thalweg Max Pool
206.73	95.55 95.7	Max Pool Thalweg
212.73	96.28	Thalweg
217.77	96	TR
217.96	95.33	TP
223.45	95.07	Thalweg
228.34	95.63	Thalweg
233.05	95.52	TR
236.42 239.59	95.46 94.98	Thalweg
239.59 243.59	94.98 94.69	Thalweg TP
247.56	94.29	Thalweg
252.29	95.35	Max Poo
252.49	95.32	Thalweg
257.62	95.04	TR
261.35	95.07	TP
269.66	95.28	Thalweg
275.14	95.36	Thalweg
281.56 287.81	95.23 94.83	TR Thalweg
291.16	94.83	Thalweg
299.48	94.88	Thatweg
308.39	94.74	Thalweg
315.91	94.98	Thalweg
323.44	95.06	Thalweg
329.84	94.87	Trun
341.04 347.11	95.01 94.78	Thalweg Thalweg
361.05	94.78 94.81	Thalweg
365.68	94.84	Thalweg
375.69	94.59	TR
382.73	94.66	Thalweg
388.82	94.54	Thalweg
397.01	94.15	Thalweg
397.53 400.82	94.14 94.28	Thalweg Thalweg
400.82 410.69	93.9	Thalweg
420.13	93.47	Thalweg
426.5	93.75	TP
429.84	93.39	Thalweg
433.14	93.72	Thalweg
439.53	93.83	Thalweg
450.11	93.51	Thalweg
454.3 459.56	93.32 92.96	TR TP
459.56	92.96	Thalweg
476.35	92.99	Thalweg
479.92	93.4	Thalweg
484.21	92.76	Thalweg
488.02	93.18	Thalweg
492.64	93.22	Thalweg
499.96	93.38	Thalweg
513.16 520.43	93.04	Thalweg TR
520.43 527.93	92.83 92.68	
527.93 532.21	92.68	Thalweg TP
543.6	93	Thalweg
550.43	92.57	Thalweg
557.2	92.72	Thalweg
561.19	92.6	Thalweg
568.11	92.93	Thalweg
	92.96	Thalweg
577.2 586.08	92.73	Thalweg

Station 0	TW-2007 97.31	Station 0.91	2007 WS-2007 97.66	Station 2.2	BKF-2007 100.18	Notes
5.08	97.31	4.1	97.62	10.72	99.45	U
9.66	97.37	8.39	97.62	35.31	99.22	Р
12.19	97.17	22.95	97.58	37.01	99.17	Р
19.4	96.61	31.25	97.58	65.35	98.79	Р
24.62	96.65	34.85	97.56	81.44	98.61	MP
27.38	96.62	42.6	97.5	135.21	98.51	Р
31.76	97.2	53.7	97.32	143.16	98.48	U
41.09	97.19	56.64	97.31	191.45	98.4	R
43.72	97.06	61.35	97.29	206.22	98.08	R
44.95	96.94	72.03	97.29	219.05	98	U
51.21	96.75	87.2	97.25	244.38	97.6	Р
55.23	96.62	96.92	97.15	273.09	97.23	P
58.38	96.43	114.11	97.03	283.27	97.61	MP
63.13	96.81	118.94	97.05 96.86	295.82	96.92	U
68.71 73.92	96.83 96.71	128.26 131.95	96.86	349.86 356.09	96.75 96.79	U
79.5	96.71	151.93	96.80	367.01	96.79	U
84.3	96.71	156.87	96.71	434.95	96.02	U
90.22	96.61	160.62	96.69	470.52	95.59	U
100.98	96.64	173.77	96.6	472.5	95.6	U
105.05	96.73	174.95	96.6	501.46	95.36	P
105.57	96.31	176.69	96.58	570.22	94.47	MP
112.11	96.7	188.75	96.53	599.64	94.28	U
125.47	96.67	199.31	96.43	628.92	94.21	U
130.19	96.4	202.96	96.43	641.58	94.34	U
134.65	96.49	215.6	96.34	669.65	93.95	U
137.62	96.44	222.8	95.96	698.26	93.81	U
143.91	96.5	227.78	95.95	728.47	93.93	Ŭ
148.18	96.49	230.38	95.95	823.08	93.55	Р
151.5	96.06	233.75	95.94	887.54	93.15	Р
153.11	96.06	236.25	95.91	914.42	93.09	MP
156.78	96.27	236.59	95.9	933.44	92.76	Р
161.85	96.38	253.19	95.89	986.5	92.69	U
172.8	96.29	264.51	95.8	1069.11	92.56	U
176.31	96.03	282.82	95.72	1111.29	92.23	U
178.9	96.27	291.06	95.7	1158.31	92.09	R
188.15	95.53	310.05	95.48	1222.63	91.9	U
192.97	95.25	324.43	95.39	1355.91	91	Р
199.67	95.47	342.62	95.37	1379.79	90.84	Р
200.83	95.42	351.24	95.37	1451.87	90.05	Р
210.13	95.69	357.88	95.32	1499.48	89.34	U
212.17	96.18	362.81	95.32	1619.33	88.72	R
217.41	95.37	370.1	95.27	1654.68	88.26	P
219.36	95.1	379.12	95.19	1673.41	88.62	MP P
224.8 228.33	95.22 95.65	384.82 395.81	95.19 94.82	1701.13 1702.19	88.13 88.27	P
228.33	95.64	403.61	94.82	1702.19	87.86	U
234.37	95.35	403.01	94.29	1776.09	87.34	P
238.89	94.83	422.7	94.31	1920.62	86.61	P
244.33	94.14	449.01	94.12	2013	86.28	MP
247.37	94.35	460.21	93.82	2061.75	85.95	P
252.99	95.42	484.73	93.81	2109.99	85.65	Р
260.86	95.04	495.35	93.72	2205.37	84.63	Р
267.77	95.36	502.45	93.71	2250.12	84	Р
270	95.39	513.01	93.7	2304.53	83.17	U
279.65	95.2	521.95	93.38	2394	82.38	Р
286.05	94.75	522.85	93.38			Р
294.61	95.02	525.51	93.37			Р
307.6	94.66	536.32	93.32			MP
320.96	95.1	545.97	93.3			Р
328.29	94.91	557.69	93.25			MP
332.76	95.11	564.2	93.24			U
338.78	94.78	572.75	93.07 93.06	┥ ┥		U
343.29 346.76	94.8 94.89	579.99 592.11	93.06	├ ──		U U
346.76	94.89	592.11	92.95			U
354.15	94.83	607.55	92.92			U
360.5	94.96	616.07	92.79			U
366.4	94.85	621.5	92.77	1		U
376.33	94.58	635.52	92.77			U
381.02	94.5	662.81	92.75			Ŭ
391.15	94.18	667.79	92.75			U
398.66	94.11	673.1	92.68			Р
425.43	93.43	682.3	92.64			MP
430.48	93.69	694.3	92.56			Р
433.26	93.77	702.88	92.58			Р
443.47	94.05	726.04	92.52			U
450.46	93.71	740.5	92.52			U
459.8	93.05	748.98	92.47			U
471.3	93.13	759.31	92.45	↓ ↓		U
481.19	93.32	763.15	92.45			U
493.75	93.18	768.87	92.45	↓ ↓		U
494.47	93.23	774.31	92.45			U
503	93.31	781.53	92.4			U
514.3	93.05	789.04	92.29			U
522.95	92.81	796.8	92.29			U
524.53	92.8	804.06	92.29	└──		U
535.45	92.72	822.5	92.29			U
544.92	92.68	841.52	92.29			U
554.61	92.59	842.85	92.29			U
556.9	92.67 92.67	847.02	92.29	┥ ┥		U
571.13	92.67 92.74	853.45 862.31	92.16 92.16	├		U
579.2			74.10			U U

CV-2007						
Station	Elevation					
2024.93	85					
2071.1	84.45					
2120.58	84.18					
2169.31	83.14					
2214.25	82.61					
2260.63	81.85					
2354.95	80.47					
2400.58	80.62					

Cato Farms MY-2007 Longitudinal Profile

Station	TW-2005	Notes
600.45 618.1	92.72 92.56	TP
620.97	92.56	Thalweg TR
624.23	92.1	TP
628.35	92.02	Thalweg
636.82 646.66	92.26 92.5	Thalweg Thalweg
651.43	92.5	Thalweg
653.37	91.9	TR
659.48	92.31	Thalweg
670.21 671.95	92.3 91.84	Thalweg TR
678.66	92.17	Thalweg
686.81	91.69	Thalweg
692.11	91.63	TP
700.35 708.1	91.81 91.7	Thalweg Thalweg
714.45	91.53	Thalweg
721.17	90.95	Thalweg
742.45 749.31	92.33 92.06	Thalweg Thalweg
761.77	92.06	TR
766.71	91.28	Thalweg
776.46	91.52	TP
783.68 790.24	91.66 91.45	Thalweg TR
802.34	91.45	TP
812.37	91.19	Thalweg
821.9	91.2	Thalweg
830.84	91.61	Thalweg
838.84 844.93	91.38 91.03	Thalweg Trun
853.09	91.31	TP
860.75	91.22	Thalweg
868.51 876.91	91.36 91	Thalweg TR
890.32	91.02	Thalweg
899.4	90.69	TP
907.09	90.72	Thalweg
912.91 917.56	90.45 90.68	Thalweg Thalweg
932.09	90.53	Thalweg
935.85	89.55	Thalweg
943.48	90.86	Thalweg
954.2 972.63	90.68 90.46	Thalweg Thalweg
972.63	90.46 89.4	Thalweg
996.06	90.94	Thalweg
1000.91	90.92	Thalweg
1016.79 1026.55	90.33 90.02	TR Thalweg
1020.55	89.58	TP
1036.99	90.68	Thalweg
1046.36	90.52	Thalweg
1053.07 1056.57	90.36 89.51	TR Thalweg
1059.56	90.4	TP
1070.78	90.12	Thalweg
1078.4	89.91	TR
1096.83 1109.45	89.88 89.98	TP Thalweg
1119.19	89.41	Thalweg
1128.25	89.55	Thalweg
1132.09	89.67	Thalweg
1137.35	90.36 90.24	Thalweg Thalweg
1154.42	89.99	TR
1161.04	89.5	TP
1166.39	89.76	Thalweg
1174.65 1185.86	89.16 89.27	Thalweg Thalweg
1185.94	89.27	Thalweg
1191.9	90.28	Thalweg
1197.75	89.13	Thalweg
1204.26 1212.54	89.85 90.12	TR TP
1212.54	90.12 89.63	Thalweg
1220.9	89.07	TR
1225.13	89.73	TP
1229.8	89.13	Thalweg
1235.89 1242.33	89.78 89.55	Thalweg Thalweg
1245.84	89.76	Trun
1253.21	89.81	Thalweg
1257.8	89.68	Thalweg
1268.3 1274.07	89.51 89.53	Thalweg Thalweg
1274.07	89.53	Thaiweg
1293.57	89.25	Culvert Ir
1296.92	89.92	Thalweg
1307.61 1317.67	89.47 89.39	Thalweg TR
1317.67	89.39 88.84	Thalweg
1325.69	89.52	TP

			2007			
Station	TW 2007	Station		Station	PKE 2007	Notor
Station	TW-2007	Station	WS-2007	Station	BKF-2007	Notes
592.35	92.53	876.32	92.01			Р
601.45	92.68	890.98	91.76			R
612.53	92.45	906.39	91.67			R
613.22	92.4091	910.89	91.63			Р
618.34	91.9191	915.24	91.54			Р
	91.9491		91.36			MP
627.42		918.67				
635.96	92.2291	943.34	91.4			Р
648.78	92.3491	952.18	91.36			Р
654.78	91.9191	966.68	91.32			MP
659.43	92.3791	980.4	91.36			U
						P
675.28	91.8691	985.89	91.32			
683.93	91.7091	992.18	91.18			Р
694.66	91.5491	1005.24	91.23			Р
717.22	91.1091	1012.2	91.15			Р
723.15	90.7391	1022.03	91.15			MP
744.36	91.93	1054.45	91.14			R
750.28	91.7291	1061.44	91.14			Р
756.2	91.3791	1070.71	91.13			Р
760.01	91.4091	1078.12	91.13			Р
766.85	91.2391	1082.38	91.13			P
						-
775.51	91.4591	1085.64	91.13			Р
792.32	91.7691	1088.36	91.13			Р
800.65	91.04	1089.02	91.13			MP
						P
805.98	91.05	1096.58	91.11			
818.11	91.3	1109.17	90.95			Р
836.89	91.51	1117.15	91			Р
840.27	90.88	1117.51	90.95	1		P
				l		
845.09	90.61	1144.88	90.87			MP
850.82	90.81	1145.54	90.73			Р
857.92	91.28	1148.91	90.84	1		U
865.16	91.33	1159.81	90.72	1		U
				I		
872.71	90.89	1164.46	90.73			U
887.25	90.61	1169.11	90.76			U
900.79	90.59	1171.9	90.74			Р
908.46	90.4	1175.05	90.72	1		P
				l		
913.63	89.96	1184.05	90.73			MP
917.91	90.55	1190.75	90.64			Р
930.96	90.21	1209.86	90.64	1		Р
942.66	89.61	1220.32	90.69	1		MP
949	90.56	1220.52	90.47			U
						-
963.05	90.5	1225.35	90.64			Р
976.06	90.06	1228.91	90.51			Р
980.48	90.4	1238.25	90.47			Р
						-
988.03	89.42	1251.55	90.22			MP
1000.45	90.25	1270.31	90.22			Р
1005.14	90.6	1286.02	90.22			Р
1018.76	90.13	1302.49	90.22			Р
1025.54	89.45	1310.76	90.07			MP
1035.56	90.29	1319.22	89.87			Р
1045.97	90.6	1328.8	89.87			U
1052.71	90.55	1343.53	89.87			Р
1058.23	89.48	1349.85	89.87			MP
1068.12	90.56	1350.42	89.84			U
1075.17	90.5	1356.6	89.81			Р
1077.05	90	1381.72	89.62			Р
1083.49	90.18	1404.16	89.39			Р
1090.2	90.2	1406.11	89.26			Р
1104.08	89.98	1408.09	89.35			Р
1121.66	89.18	1412.99	89.04			U
1141.02	90.07	1426.03	88.65	1		U
				l		
1149.95	89.83	1428.68	88.65			U
1158.16	90.3	1436.81	88.65			Р
1164.34	89.85	1445.67	88.65			Р
1171.8	89.07	1452.66	88.42	1		MP
1179.08	89.18	1475.27	88.43			P
				I		
1185.08	89.17	1490.74	88.4			Р
1189.01	90.16	1494.05	88.4			Р
1192.86	90.26	1502.31	88.3	1		U
1199.86	89.04	1536.75	88.24	1		Ŭ
1212.59	90.05	1549.73	88.24			U
				I		
1218.83	89.43	1568.35	88.05			U
1225.05	89.85	1582.71	87.92	I	L	U
1232.69	89.02	1598.74	87.16			U
1246.01	89.78	1601.62	87.16	1		Ŭ
1240.01						U
	89.53	1608.51	87.16			
1267.85	89.97	1636.25	87.16			U
1276.07	89.13	1637.63	87.03	I	L	P-BRD
1291.65	89.02	1640.91	86.85			P-BRD
1301.31	89.9	1644.96	86.85	1		U
	89.37					U
1309.6		1649.31	86.85	I		-
1318.28	89.56	1656.72	86.68		L	Р
1333.8	89.13	1660.26	86.57			Р
1351.19	88.74	1666.44	86.57			Р
1370.97	87.71	1673.57	86.57			MP
1389.92	89.25	1684.71	86.5			U
1507.72	88.07	1690.73	86.5			U
1402.04		1693.22	86.5	1		R
1402.04				I		
1402.04 1408.03	89.09		86.5			U
1402.04 1408.03 1421.66	88.18	1706.8				
1402.04 1408.03		1706.8	86.4			P
1402.04 1408.03 1421.66 1427.6	88.18 88.18	1714.4	86.4 86.24			
1402.04 1408.03 1421.66 1427.6 1439.59	88.18 88.18 87.73	1714.4 1719.1	86.24			Р
1402.04 1408.03 1421.66 1427.6 1439.59 1452.13	88.18 88.18 87.73 87.08	1714.4 1719.1 1735.11	86.24 86.24			P MP
1402.04 1408.03 1421.66 1427.6 1439.59 1452.13 1461.34	88.18 88.18 87.73 87.08 88.25	1714.4 1719.1 1735.11 1739.54	86.24 86.24 86.24			P MP P
1402.04 1408.03 1421.66 1427.6 1439.59 1452.13 1461.34 1471.27	88.18 88.18 87.73 87.08 88.25 87.75	1714.4 1719.1 1735.11 1739.54 1753.43	86.24 86.24 86.24 86.24			P MP P P
1402.04 1408.03 1421.66 1427.6 1439.59 1452.13 1461.34	88.18 88.18 87.73 87.08 88.25	1714.4 1719.1 1735.11 1739.54	86.24 86.24 86.24			P MP P

Cato Farms MY-2007 Longitudinal Profile

Station	TW-2005	Notes
1342.54	88.86	TR
1348.74	89.17	TP
1359.68	88.85	Thalweg
1362.62	88.91	TR
1367.57	88.35	TP
1375.72	87.6	Thalweg
1380.94	88.42	Thalweg
1388.39	89.19	Thalweg
1392.72	88.94	Head of Glide TR
1393.47 1399.88	88.28	
1399.88	88.47 88.02	Thalweg TP
1408.65	88.32	Thalweg
1414.19	88.64	Thalweg
1433.97	88.3	Head of Glide
1436.39	87.71	Trun
1444.87	87.7	TP
1446.92	87.6	Thalweg
1451.56	87.54	Thalweg
1456.26	87.02	Thalweg
1459.01	88.38	Thalweg
1467.29	88.09	Thalweg
1493.6	87.36	Thalweg
1498.68	86.96	Thalweg
1508.16	87.5	Thalweg
1512.2	88.44	Thalweg
1531.14	87.86	Thalweg
1557.99	87.55	TR
1560.83	87.11	Thalweg
1568.41	87.65	TP
1571.6	87.75	Thalweg
1587.47	87.16	Thalweg
1598.6	86.96	TR
1602.74	87.35	TP
1609.66	87.1	Thalweg
1621.62	86.72	Thalweg
1623.64	86.79	Thalweg
1625.19	87.1	Thalweg
1627.25	86.66	Thalweg
1628.77	86.35	TR
1639.4	86.85	TP
1644.63	87.21	Thalweg
1645.67	86.91	Thalweg
1646.83	86.78	TR
1651.07	85.37	Thalweg
1659.27	85.88	Thalweg
1666.96	85.98	TP
1673.58	86.2	Thalweg
1682.42 1688.33	85.85 86.06	Thalweg Thalweg
1696.99	86.00	Thalweg
1713.58	86.25	Thalweg
1733.24	85.56	Thalweg
1735.04	84.77	Thalweg
1740.21	85.34	TR
1747.57	85.89	Thalweg
1756.88	85.84	TP
1760.76	85.25	Head of Glide
1781.64	85.29	TR
1783.58	85.17	TP
1788.83	85.87	Thalweg
1797.85	85.76	Thalweg
1802.05	85.18	TR
1793.62	85.38	Thalweg
1810.49	85.11	TP
1815.06	85.5	Thalweg
1820.03	85.03	Thalweg
1823.47	84.91	TR
1825.87	85.37	TP
1829.63	85.87	Thalweg
1832.02	85.21	Head of Glide
1839.97	84.84	TR
1841.77	84.22	TP
1845.35	84.3	Thalweg
1864.26	84.97	Thalweg
1870.05	84.6	Head of Glide
1868.13	83.83	Thalweg
1872.39	84	Thalweg
1882.53	84.05	Thalweg
1885.16	84.1	Thalweg
1893.4	84.4	Thalweg
1907.19	83.85	Thalweg
1911.34	83.98	Thalweg
1921.24	84.45	Thalweg
1930.19	83.51	Thalweg
1934.85	84.32	Thalweg
1959.02	84.34	Thalweg
1961.23	84.32	Thalweg
1965.27	84.16	Thalweg
1975	84.15	Thalweg
1986.29	84.28	Thalweg
1991.1	84.17	Thalweg
1993.38	82.52	Thalweg
		TR
2008.18	84.34	1 K

			2007			
Station	TW-2007	Station	WS-2007	Station	BKF-2007	Notes
1495.75	86.74	1764.15	86.24			MP
1513.81	88.31	1768.64	86.12			U
1531.13	87.64	1769.64	86.12			U
1541.68 1556.03	88.06 87.18	1777.02 1777.46	86.12 86.12			P
1565.66	86.66	1779.85	85.72			MP
1570.06	87.95	1817.37	85.51			R
1583.63	87.72	1849.47	85.51			R
1587.69	87.15	1855.78	85.47			Р
1594.83	86.62	1866.1	85.41			MP
1601.48	87.04	1878.51	85.26			U
1612.77 1620.33	86.99 86.73	1883.03 1890.45	85.26 85.26			U U
1620.55	86.75	1926.6	85.25			P
1630.1	85.96	1930.33	85.25			MP
1635.01	86.31	1941.34	85.23			Р
1644.45	86.76	1944.1	85.23			Р
1651.49	86	1947.58	85.23			Р
1660.06	85.63	1950.49	85.23			MP
1666.14	86.12	1967.71	85.23			P
1679.74 1690.8	85.98 86.09	1992.09 1999.24	85.23 85.21			P U
1696.45	85.98	2012.16	85.21			U
1703.41	86.01	2026.7	85.02			U
1705.23	86.46	2036.33	85.02			U
1711.84	86.53	2036.98	85.02			R
1721.74	85.86	2045.18	84.15			Р
1727.33	85.64	2045.67	84.15			P
1730.93	84.37	2048.36	84.13			MP
1747.07 1752.56	85.86	2050.37	84.13 84.44			P P
1752.56	85.89 85.22	2062.08 2069.87	84.44 84.44			P P
1765.38	85.4	2009.87	84.44			P
1773.64	85.4	2082.12	84.44			P
1779.5	85.3	2094.24	84.26			MP
1789.63	85.84	2095.75	84.26			U
1793.57	85.41	2121	84.17			U
1807.58	85.64	2122.33	84.16			P
1816.44	85.12 84.43	2133.21	83.25 83.08			P MP
1819.36 1826.31	85.37	2156.17 2156.72	83.08			P
1828.09	85.53	2176.67	82.83			U
1834.87	84.49	2208.14	82.83			Ŭ
1839.68	84.43	2208.36	82.83			U
1848.96	84.55	2211.9	82.81			U
1864.26	84.95	2233.41	82.01			U
1868.85	83.95	2243.35	82.01			U
1881.73	83.81	2248.57	82.01			U
1897.32 1912.84	84.31 83.99	2255.52 2270.39	82.04 81.62			U U
1912.64	84.4	2270.39	81.64			P
1932.81	83.2	2281.95	81.64			MP
1940.58	84.38	2282.4	81.64			Р
1944.15	84.27	2285.58	80.92			U
1960.19	84.14	2291.72	80.92			U
1977.27	84.09	2292.27	80.92			P
1983.08	84.29	2302.81	80.92			P
1991.29 2008.69	83.17 84.37	2310.26 2318.31	80.9 80.8			MP U
2003.09	84.62	2322.2	80.71			U
2014.98	84.61	2327.31	80.66			U
2024.93	85	2336.9	80.66			CV
2031.89	83.49	2354.33	80.66			Р
2036.78	83.24	2374.62	80.66			P
2039.73 2049.43	82.7	2428.55	80.63			MP
2049.43 2052.41	84.16 84.3	2436.54 2448.25	80.5 80.5	<u> </u>		P U
2052.41	83.46	2448.23	80.5			U
2067.47	83.40					U
2069.56	84.29					U
2071.24	84.63					U
2074.06	84.06					CV
2076.7	82.46		L			P
2086.01 2092.84	81.99 83.81					MP O
2092.84 2095.62	83.81 84.42					U
2107.73	82.71					U
2116.24	83.9					U
2120.24	84.46					U
2120.58	84.18					CV
2125.12	81.9			L		P
2128.33	81.47					MP
2137.73 2140.84	83.09 83.46					P U
2140.84 2145.99	83.46 81.58					U
2143.99	81.47					U
2156.62	82.43					U
2169.31	83.14					CV
2176.18	81.38					Р
2181.08	80.78					MP
2188.51	82.5			L		P
2194.39 2202.55	82.76 81.32			<u> </u>		U U
2202.33	82.39					U
2200.79	82.59					U
			-	• • • •		

	2005	
Station	TW-2005	Notes
2014.75	84.79	Thalweg
2020.57 2027.26	84.79 84.97	Thalweg
2027.20 2024.93	85	Thalweg Thalweg
2027.16	84.11	Thalweg
2030.62	83.72	TP
2039.6	84.18	Thalweg
2049.52	84.27	Thalweg
2052.62	84.64	Thalweg
2057.52	84.53	Thalweg
2059.13	83.83	Thalweg
2069	83.86	Thalweg
2070.85	84.77	TR
2074.06	84.06	TP
2074.09	83.31	Thalweg
2076.67	82.96	Thalweg
2084.99	82.14	Head of Glide
2094.39 2102.37	83.62	TR
2102.37 2104.03	83.29	Thalweg TP
2105.13	82.51	Thalweg
2105.15	83.2	Thalweg
2111.00	83.3	TP
2116.42	81.3	Thalweg
2118.25	82.28	Head of Glide
2120.58	84.18	TR
2123.56	80.58	Thalweg
2126.63	80.73	TP
2127.69	81.12	Thalweg
2138.86	81.17	Thalweg
2141.75	83.21	TR
2149.08	80.64	Thalweg
2153.16	81.2	Thalweg
2157.16	80.82	Thalweg
2163.12	81.4	TP
2169.31	83.14	Thalweg
2169.35	83.14	TP
2174.71	80.84	Thalweg
2182.3	82.55	Thalweg
2192.65	82.63	TR TP
2199.9 2202.96	81.64 82.34	
2202.98	82.34	Thalweg
2207.13	82.59	Thalweg Thalweg
2214.25	82.61	TR
2215.49	81.43	Thalweg
2222.42	80.32	Thalweg
2227.01	81.24	TP
2230.75	81.56	Thalweg
2231.83	82.23	Thalweg
2235.32	82.25	TP
2237.66	81.28	Thalweg
2253.97	81.4	Thalweg
2259.64	81.1	Thalweg
2260	81.5	TR
2260.63	81.85	Thalweg
2263.47	80.81	Thalweg
2268.77	80	TP
2281.43	81.16	Thalweg
2289.75	80.71 80.5	Thalweg TR
2296.14 2299.55	80.5	TR Thalweg
2299.55 2303.12	79.79	Thalweg
2305.12	80.13	Thatweg
2310.39	79.99	Thalweg
2322.52	80.18	Thalweg
2324.1	80.38	Thalweg
2327.5	80.28	Trun
2329.55	79.69	Thalweg
2333.18	79.81	Thalweg
2334.85	79.08	TP
2340.48	79.62	Thalweg
2345.72	80.14	Thalweg
2349.03	79.6	Head of Glide
2355.59	79.97	Thalweg
2354.95	80.47	Thalweg
2357.48	79.81	TR
2358.01	79.55	Thalweg
2365.22	78.9	TP
2366.87	79.54	Thalweg
2369.32 2373.39	79.49	Thalweg
2373.39 2380.94	79.94 80.03	TR TP
2380.94 2391.7	80.03	Thalweg
2391.7 2396.87	80.03	TR
2396.87	80.62	Thalweg
2400.38	80.4	Thalweg
	- 00.T	
	79.13	Thalweg
2401.55 2409.94 2414.54	79.13 79.58	Thalweg Thalweg

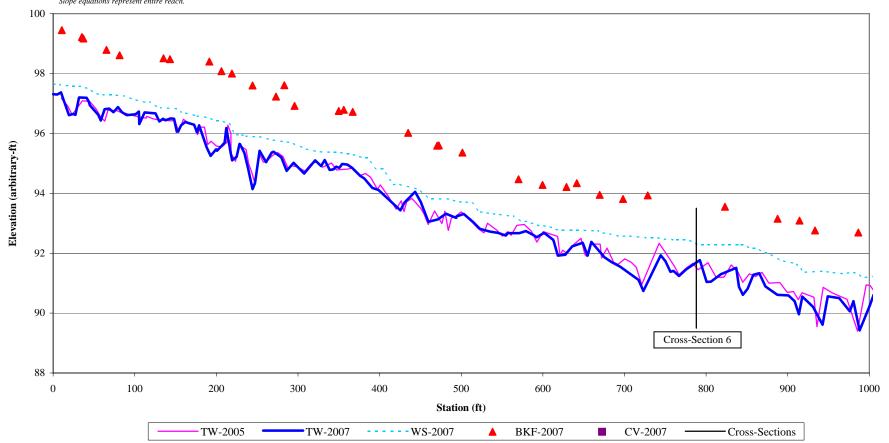
Cato Farms

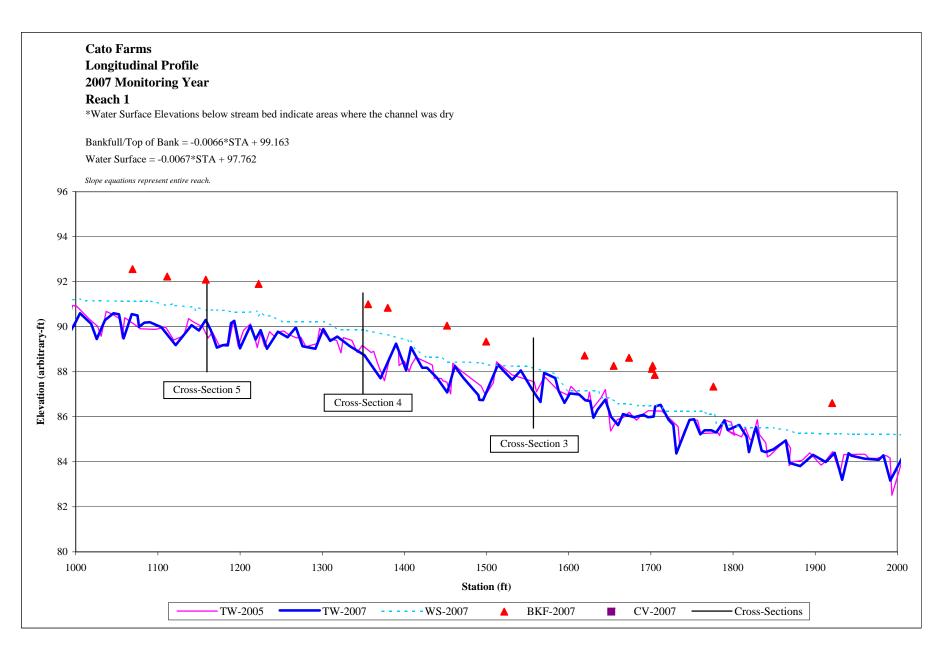
MY-2007	Longitudinal Profile

	2007							
Station	TW-2007	Station	WS-2007	Station	BKF-2007	Notes		
2214.25	82.61					CV		
2219.66	80.37					MP		
2223.85	80.42					Р		
2229.64	81.8					U		
2236.84	81.79					U		
2241.37	80.69					U		
2253.4	80.58					U		
2255.51	81.69					U		
2258.74	81.87					U		
2260.63	81.85					CV		
2263.28	79.71					MP		
2272.79	79.95					Р		
2292.89	80.75					U		
2299.39	79.9					U		
2302.12	80.41					U		
2305.01	80.98					U		
2316.62	79.66					U		
2318.36	80.51					U		
2327.38	79.63					U		
2334.77	79.82					U		
2345.92	79.83					U		
2350.36	80.22					U		
2352.05	80.68					U		
2354.95	80.47					CV		
2357.55	79.34					Р		
2368.65	79.08					MP		
2378.92	80.65					U		
2381.27	80.65					U		
2388.02	80.43					U		
2396.76	80.42					U		
2400.58	80.62					CV		
2404.22	79.03					MP		
2412.84	79.49					Р		
2435.27	79.6					U		
2435.27	79.6					U		

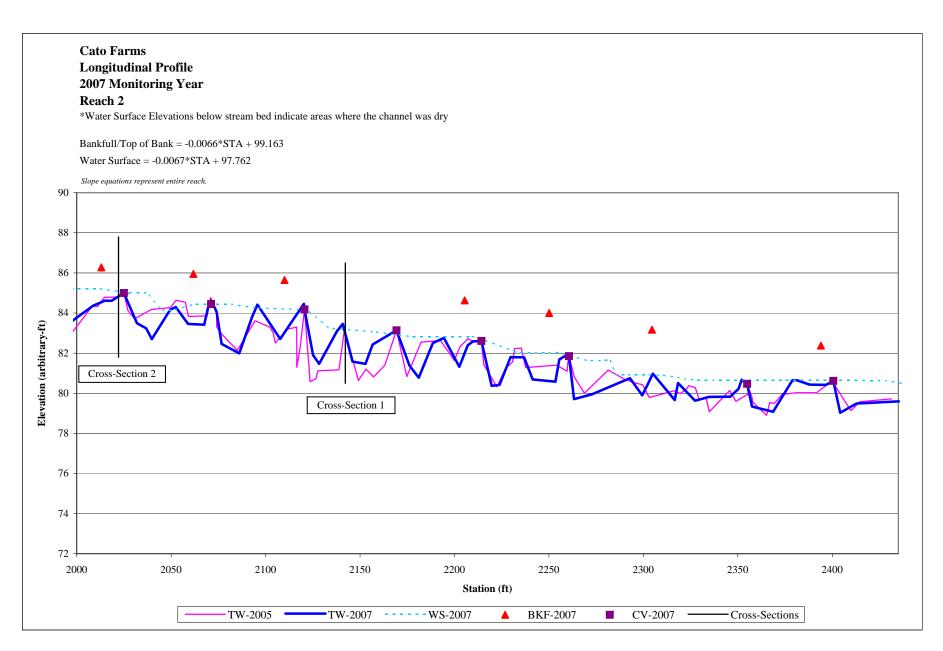
Cato Farms

Longitudinal Profile


2007 Monitoring Year


Reach 1

*Water Surface Elevations below stream bed indicate areas where the channel was dry


Bankfull/Top of Bank = -0.0066*STA + 99.163 Water Surface = -0.0067*STA + 97.762

Slope equations represent entire reach.

Appendix 2.7 Longitudinal Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Appendix 2.7 Longitudinal Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

Stream Name: Cato Farms

Cross-Section: 1 Feature: Riffle

				2005			2006			2007	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	6	12%	12%	18	18%	18%	57	57%	57%
	very fine sand	0.125	0	0%	12%	9	9%	27%	17	17%	74%
	fine sand	0.250	9	18%	30%	10	10%	37%	4	4%	78%
Sand	medium sand	0.50	23	46%	76%	5	5%	42%	0	0%	78%
	coarse sand	1.00	12	24%	100%	26	26%	68%	10	10%	88%
	very coarse sand	2.0	0	0%	100%	24	24%	92%	11	11%	99%
	very fine gravel	4.0	0	0%	100%	8	8%	100%	1	1%	100%
G	fine gravel	5.7	0	0%	100%	0	0%	100%	0	0%	100%
r	fine gravel	8.0	0	0%	100%	0	0%	100%	0	0%	100%
2	medium gravel	11.3	0	0%	100%	0	0%	100%	0	0%	100%
a v	medium gravel	16.0	0	0%	100%	0	0%	100%	0	0%	100%
•	course gravel	22.3	0	0%	100%	0	0%	100%	0	0%	100%
1	course gravel	32.0	0	0%	100%	0	0%	100%	0	0%	100%
1	very coarse gravel	45	0	0%	100%	0	0%	100%	0	0%	100%
	very coarse gravel	64	0	0%	100%	0	0%	100%	0	0%	100%
	small cobble	90	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	medium cobble	128	0	0%	100%	0	0%	100%	0	0%	100%
Cobbie	large cobble	180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	362	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	small boulder	512	0	0%	100%	0	0%	100%	0	0%	100%
boulder	medium boulder	1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAL/%of v	vhole count		50	100%	100%	100	100%	100%	100	100%	100%

Cross-Section: 2

Feature: Riffle

				2005			2006			2007	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	27	50%	50%	12	12%	12%	58	58%	58%
	very fine sand	0.125	3	6%	56%	5	5%	17%	1	1%	59%
	fine sand	0.250	9	17%	72%	17	17%	34%	11	11%	70%
Sand	medium sand	0.50	10	19%	91%	10	10%	44%	6	6%	76%
	coarse sand	1.00	3	6%	96%	22	22%	66%	8	8%	84%
	very coarse sand	2.0	1	2%	98%	14	14%	80%	9	9%	93%
	very fine gravel	4.0	0	0%	98%	14	14%	94%	6	6%	99%
G	fine gravel	5.7	1	2%	100%	6	6%	100%	1	1%	100%
	fine gravel	8.0	0	0%	100%	0	0%	100%	0	0%	100%
1	medium gravel	11.3	0	0%	100%	0	0%	100%	0	0%	100%
a	medium gravel	16.0	0	0%	100%	0	0%	100%	0	0%	100%
v	course gravel	22.3	0	0%	100%	0	0%	100%	0	0%	100%
e	course gravel	32.0	0	0%	100%	0	0%	100%	0	0%	100%
I	very coarse gravel	45	0	0%	100%	0	0%	100%	0	0%	100%
	very coarse gravel	64	0	0%	100%	0	0%	100%	0	0%	100%
	small cobble	90	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	medium cobble	128	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	large cobble	180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	362	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	small boulder	512	0	0%	100%	0	0%	100%	0	0%	100%
bodiuci	medium boulder	1024	0	0%	100%	0	0%	100%	0	0%	100%
	large boulder	2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
TOTAL/%of whole	count		54	100%	100%	100	100%	100%	100	100%	100%

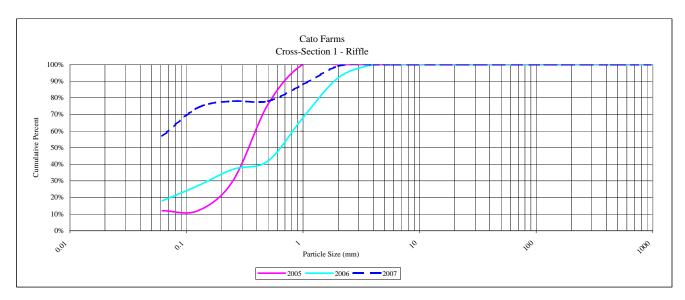
Stream Name: Cato Farms Cross-Section: 3 Feature: Pool

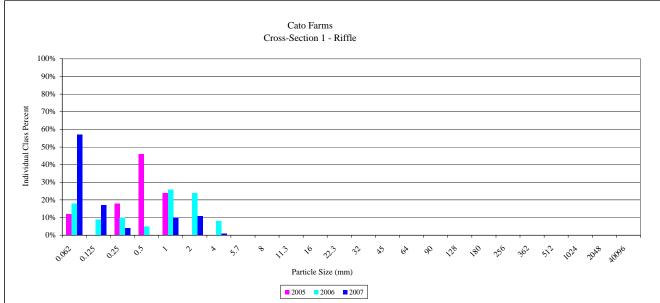
				2005			2006			2007		
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %	
Silt/Clay	silt/clay	0.062	31	61%	61%	20	20%	20%	52	52%	52%	
Sitt/Clay	very fine sand	0.125	5	10%	71%	18	18%	38%	13	13%	65%	
	fine sand	0.250	7	14%	84%	9	9%	47%	13	13%	78%	
Sand	medium sand	0.50	8	16%	100%	22	22%	69%	12	12%	90%	
	coarse sand	1.00	0	0%	100%	18	18%	87%	10	10%	100%	
	very coarse sand	2.0	0	0%	100%	13	13%	100%	0	0%	100%	
	very fine gravel	4.0	0	0%	100%	0	0%	100%	0	0%	100%	
G r a v e	fine gravel	5.7	0	0%	100%	0	0%	100%	0	0%	100%	
	fine gravel	8.0	0	0%	100%	0	0%	100%	0	0%	100%	
	medium gravel	11.3	0	0%	100%	0	0%	100%	0	0%	100%	
	medium gravel	16.0	0	0%	100%	0	0%	100%	0	0%	100%	
	course gravel	22.3	0	0%	100%	0	0%	100%	0	0%	100%	
	course gravel	32.0	0	0%	100%	0	0%	100%	0	0%	100%	
1	very coarse gravel	45	0	0%	100%	0	0%	100%	0	0%	100%	
	very coarse gravel	64	0	0%	100%	0	0%	100%	0	0%	100%	
	small cobble	90	0	0%	100%	0	0%	100%	0	0%	100%	
Cobble	medium cobble	128	0	0%	100%	0	0%	100%	0	0%	100%	
CODDIe	large cobble	180	0	0%	100%	0	0%	100%	0	0%	100%	
	very large cobble	256	0	0%	100%	0	0%	100%	0	0%	100%	
	small boulder	362	0	0%	100%	0	0%	100%	0	0%	100%	
Boulder	small boulder	512	0	0%	100%	0	0%	100%	0	0%	100% 100% 100%	
Boulder	medium boulder	1024	0	0%	100%	0	0%	100%	0	0%	100%	
	large boulder	2048	0	0%	100%	0	0%	100%	0	0%	100%	
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%	
TOTAL/%of	whole count		51	100%	100%	100	100%	100%	100	100%	100%	

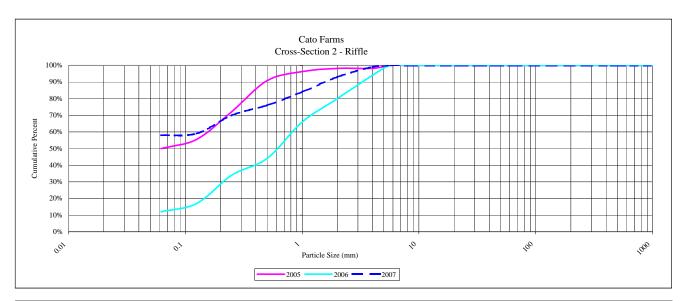
Stream Name:	Cato Farms
Courses Courses	4

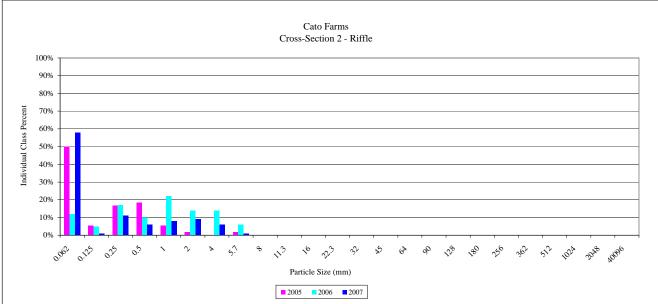
Cross-Section: 4 Feature: Pool

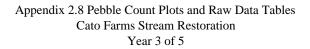
				2005			2006			2006	
Description	Material	Size (mm)	Total #	Item %	Cum %	Total #	Item %	Cum %	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	15	30%	30%	12	12%	12%	51	51%	51%
	very fine sand	0.125	8	16%	46%	8	8%	20%	11	11%	73%
	fine sand	0.250	17	34%	80%	19	19%	39%	11	11%	73%
Sand	medium sand	0.50	10	20%	100%	15	15%	54%	15	15%	88%
	coarse sand	1.00	0	0%	100%	32	32%	86%	9	9%	97%
	very coarse sand	2.0	0	0%	100%	8	8%	94%	2	2%	99%
	very fine gravel	4.0	0	0%	100%	6	6%	100%	1	1%	100%
G	fine gravel	5.7	0	0%	100%	0	0%	100%	0	0%	100%
r	fine gravel	8.0	0	0%	100%	0	0%	100%	0	0%	100%
1	medium gravel	11.3	0	0%	100%	0	0%	100%	0	0%	100%
a	medium gravel	16.0	0	0%	100%	0	0%	100%	0	0%	100%
•	course gravel	22.3	0	0%	100%	0	0%	100%	0	0%	100% 100%
e	course gravel	32.0	0	0%	100%	0	0%	100%	0	0%	100%
1	very coarse gravel	45	0	0%	100%	0	0%	100%	0	0%	100%
	very coarse gravel	64	0	0%	100%	0	0%	100%	0	0%	100%
	small cobble	90	0	0%	100%	0	0%	100%	0	0%	100%
Cobble	medium cobble	128	0	0%	100%	0	0%	100%	0	0%	100%
Connie	large cobble	180	0	0%	100%	0	0%	100%	0	0%	100%
	very large cobble	256	0	0%	100%	0	0%	100%	0	0%	100%
	small boulder	362	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	small boulder	512	0	0%	100%	0	0%	100%	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%	0	0%	100%	0	0%	100% 100% 100% 100% 100% 100% 100% 100%
	large boulder	2048	0	0%	100%	0	0%	100%	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%
	TOTAL/%of whole count		50	100%	100%	100	100%	100%	100	100%	100%

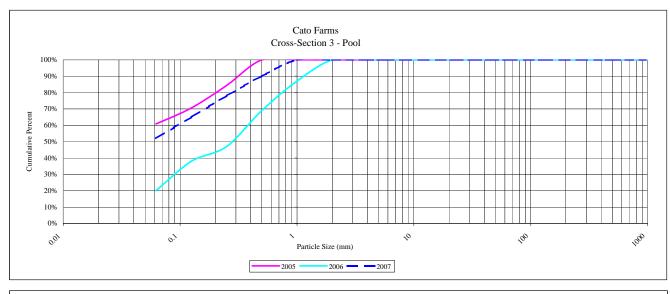

Stream Name:	Cato Farms
--------------	------------

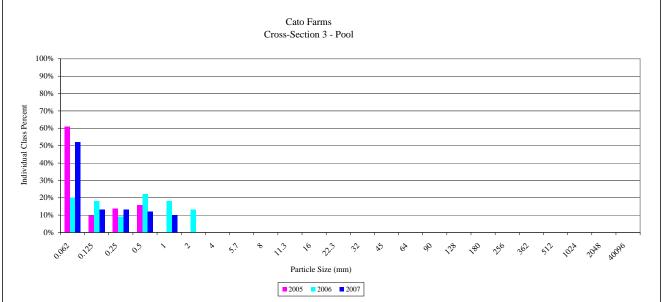

Cross-Section: 5 Feature: Pool

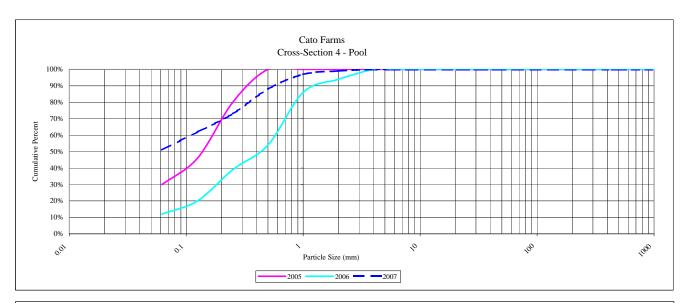

				2005			2006		2007											
Description	Material	Size (mm) Total # Item % Cum % Total # Item % Cum % Total #		Size (mm)	Total # Item % Cum % Total # Item % Cum % 7		Total # Item % Cum % Total # Item % Cum % Total #		Total # Item % Cum % Total # Item % Cum %		Total # Item % Cum % Total # Item % Cum % To		(mm) Total # Item % Cum % Total # Item % Cum % 7		Total # Item % Cum %		Item % Cum % Total # Item % Cum % Total #		Item %	Cum %
Silt/Clay	silt/clay	0.062	9	18%	18%	16	16%	16%	39	39%	39%									
Sand	very fine sand	0.125	0	0%	18%	15	15%	31%	15	15%	54%									
	fine sand	0.250	1	2%	20%	12	12%	43%	12	12%	66%									
	medium sand	0.50	15	30%	50%	16	16%	59%	16	16%	82%									
	coarse sand	1.00	16	32%	82%	35	35%	94%	12	12%	94%									
	very coarse sand	2.0	7	14%	96%	5	5%	99%	5	5%	99%									
G	very fine gravel	4.0	2	4%	100%	1	1%	100%	1	1%	100%									
	fine gravel	5.7	0	0%	100%	0	0%	100%	0	0%	100%									
	fine gravel	8.0	0	0%	100%	0	0%	100%	0	0%	100%									
1	medium gravel	11.3	0	0%	100%	0	0%	100%	0	0%	100%									
a v l	medium gravel	16.0	0	0%	100%	0	0%	100%	0	0%	100%									
	course gravel	22.3	0	0%	100%	0	0%	100%	0	0%	100%									
	course gravel	32.0	0	0%	100%	0	0%	100%	0	0%	100%									
	very coarse gravel	45	0	0%	100%	0	0%	100%	0	0%	100%									
	very coarse gravel	64	0	0%	100%	0	0%	100%	0	0%	100%									
	small cobble	90	0	0%	100%	0	0%	100%	0	0%	100%									
Cobble	medium cobble	128	0	0%	100%	0	0%	100%	0	0%	100%									
Cobble	large cobble	180	0	0%	100%	0	0%	100%	0	0%	100%									
	very large cobble	256	0	0%	100%	0	0%	100%	0	0%	100%									
	small boulder	362	0	0%	100%	0	0%	100%	0	0%	100%									
Developm	small boulder	512	0	0%	100%	0	0%	100%	0	0%	100%									
Boulder	medium boulder	1024	0	0%	100%	0	0%	100%	0	0%	100%									
	large boulder	2048	0	0%	100%	0	0%	100%	0	0%	100%									
Bedrock	bedrock	40096	0	0%	100%	0	0%	100%	0	0%	100%									
	TOTAL/% of whole count		50	100%	100%	100	100%	100%	100	100%	100%									

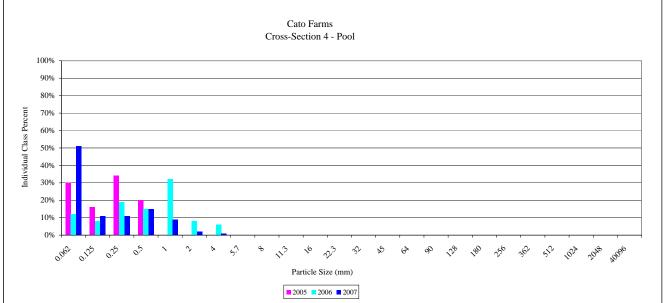

Stream Name:	Cato Farms
Cross-Section:	6

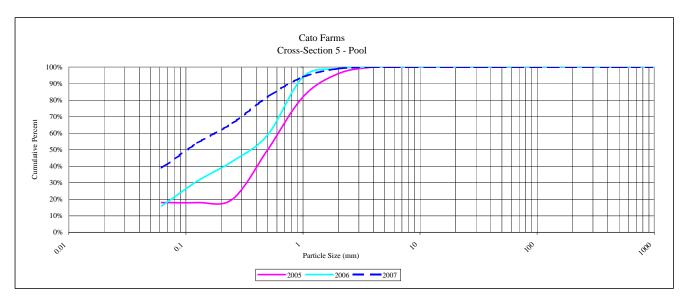

			2007				
Description	Material	Size (mm)	Total #	Item %	Cum %		
Silt/Clay	silt/clay	0.062	45	45%	45%		
	very fine sand	0.125	5	5%	50%		
	fine sand	0.250	15	15%	65%		
Sand	medium sand	0.50	15	15%	80%		
	coarse sand	1.00	8	8%	88%		
	very coarse sand	2.0	12	Item % 45% 5% 15% 15% 12% 0%	100%		
	very fine gravel	4.0	0	0%	100%		
G	fine gravel	5.7	0	0%	100%		
r	fine gravel	8.0	0	0%	100%		
-	medium gravel	11.3	0	0%	100%		
a v	medium gravel	16.0	0	0%	100%		
-	course gravel	22.3	0	0%	100%		
e 1	course gravel	32.0	0	0%	100%		
1	very coarse gravel	45	0	0%	100%		
	very coarse gravel	64	0	0%	100%		
	small cobble	90	0	0%	100%		
Cobble	medium cobble	128	0	0%	100%		
Cobbie	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
	small boulder	362	0	0%	100%		
Boulder	small boulder	512	0	0%	100%		
Douldel	medium boulder	1024	0	0%	100%		
	large boulder	2048	0	0%	100%		
Bedrock	bedrock	40096	0	0%	100%		
	TOTAL/%of whole count		100	100%	100%		

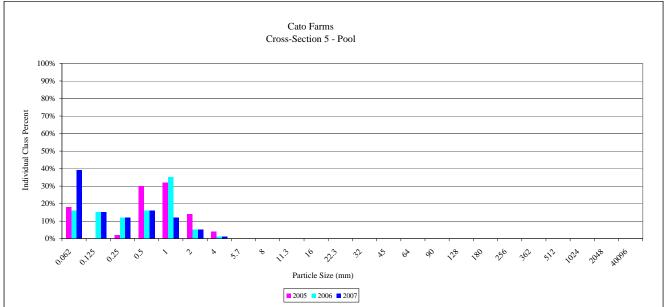


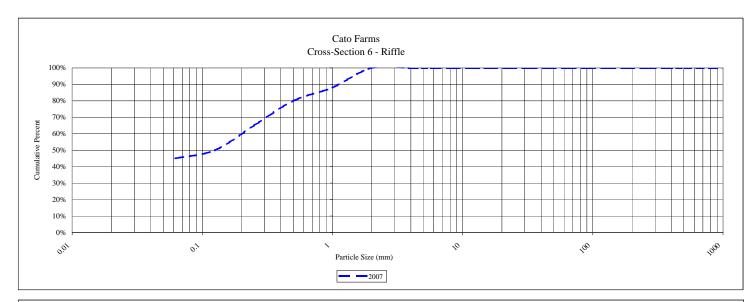


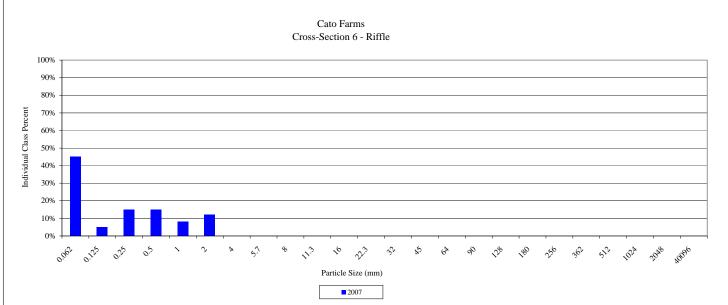




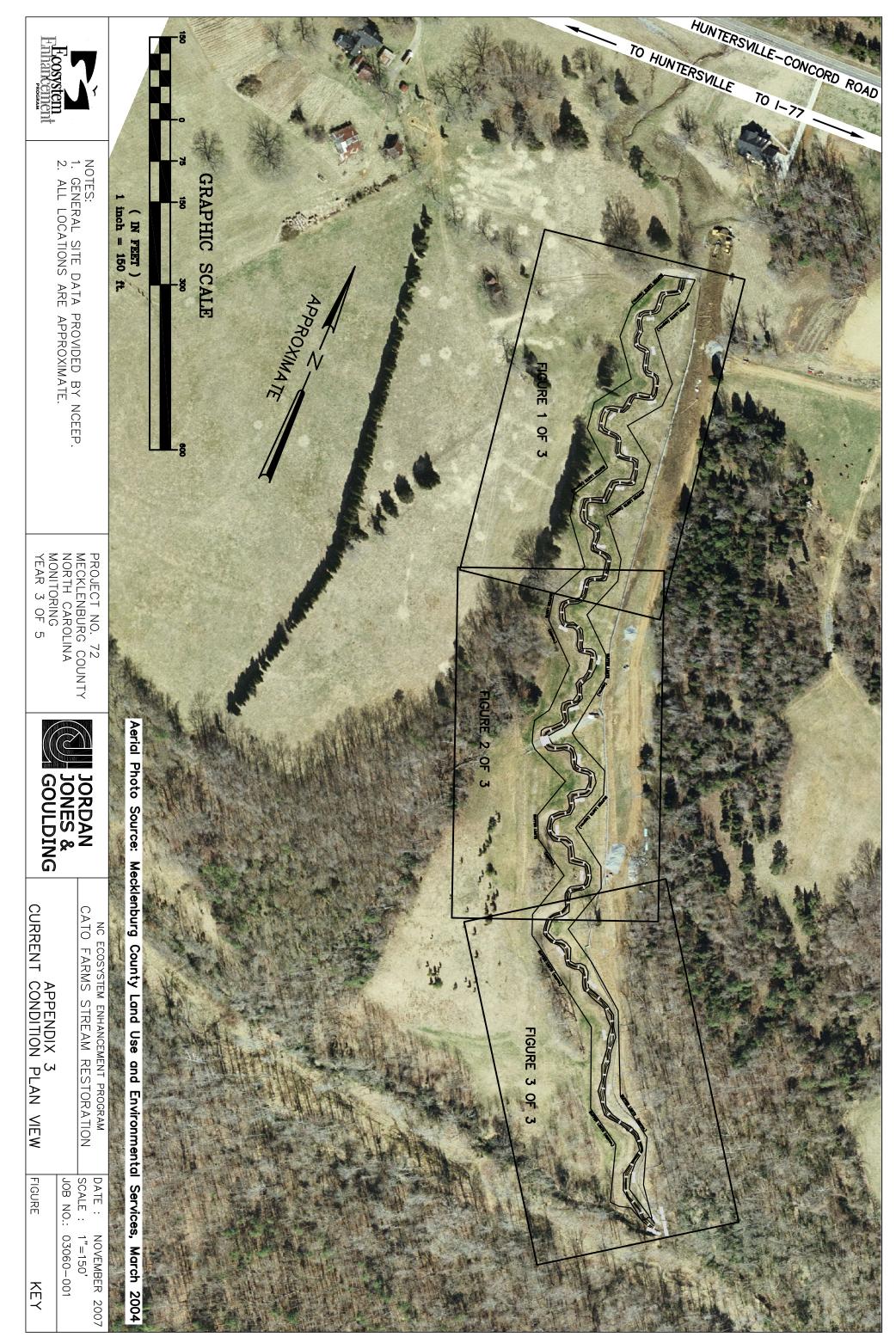


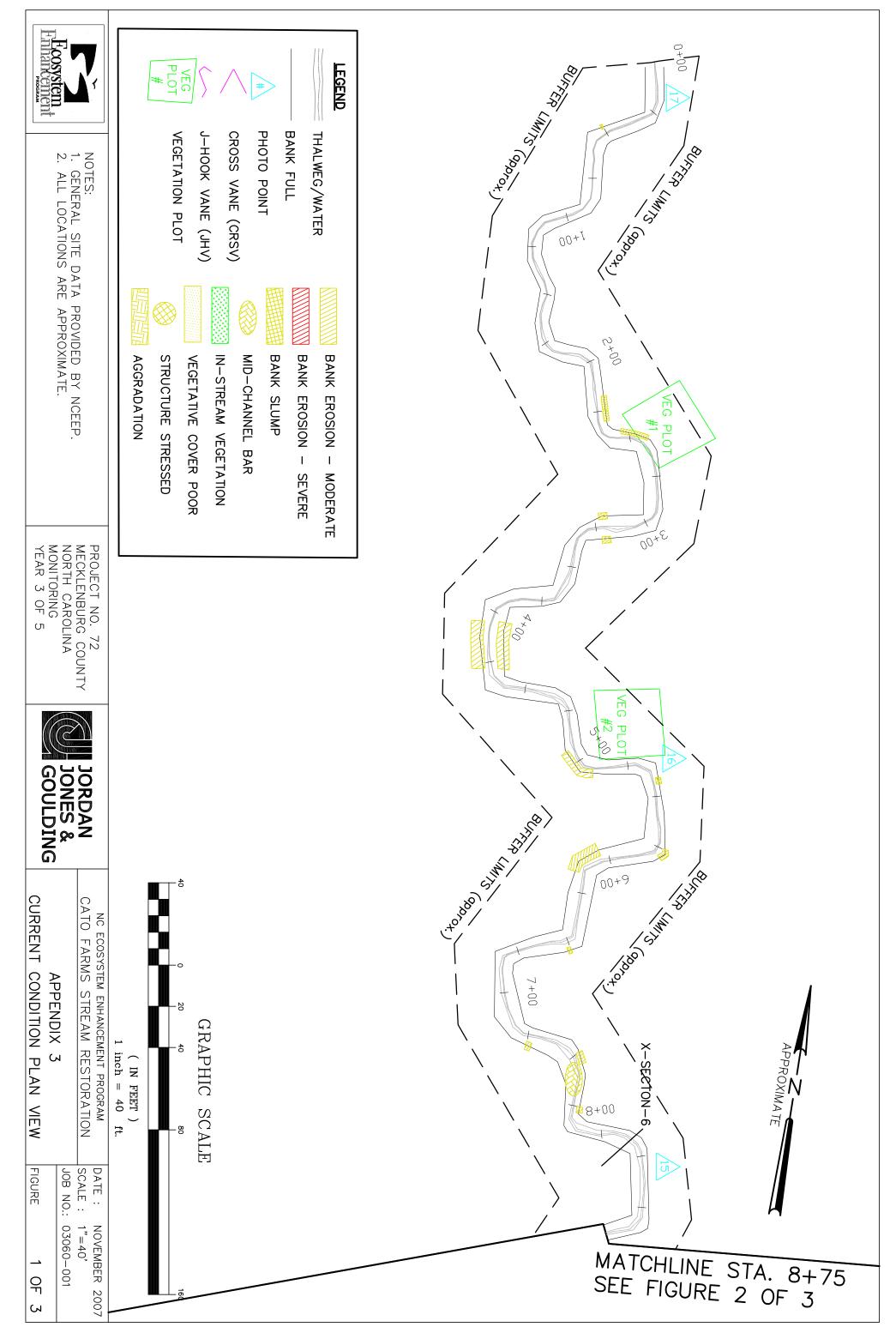

Appendix 2.8 Pebble Count Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

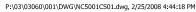


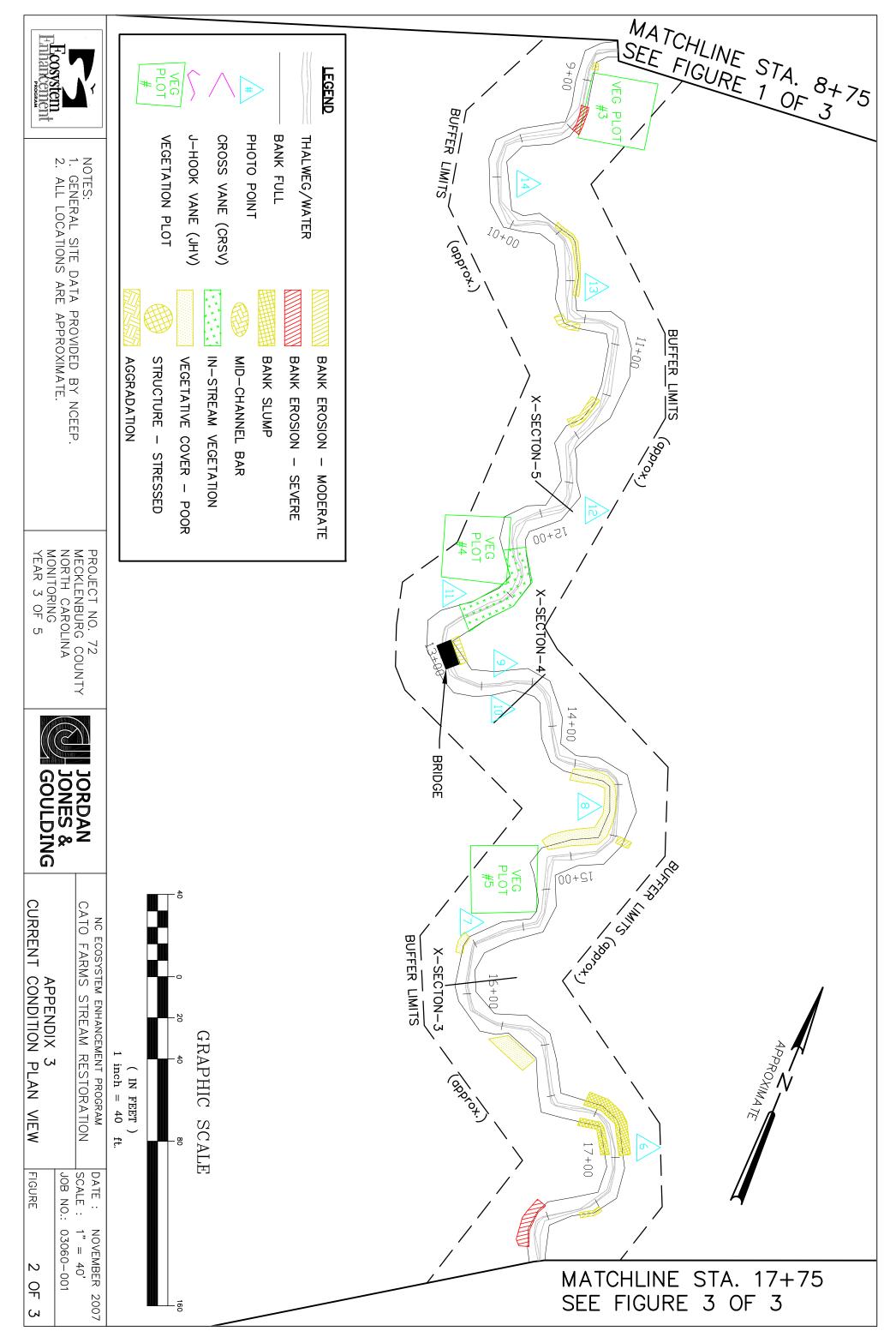

Appendix 2.8 Pebble Count Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5

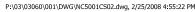
Appendix 2.8 Pebble Count Plots and Raw Data Tables Cato Farms Stream Restoration Year 3 of 5








APPENDIX 3 INTEGRATED PROBLEM AREAS PLAN VIEW


1. Current Condition Plan View Map (Integrated)

